Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crossing the boundary: how proteins permit entry to cell

17.10.2008
Scientists have made a breakthrough in understanding the inner workings of transporter proteins, which help essential chemicals move around the human body.

The findings, published today [16 October 2008] in Science Express, are important because there are hundreds of transporter proteins in the body and understanding their structure and how they work will help scientists design the next generation of drugs to treat illness and disease.

“Transporter proteins are very difficult to study,” says Professor Peter Henderson of the University of Leeds. “However, in Leeds we developed methods to maximise their expression in bacteria, and purify them very carefully so they retain their biological activity. We could then maintain a ‘pipeline’ to supply them to experts in a technique called protein crystallography, which requires very high intensity x-rays, available, for example, at the Diamond Light Source national synchrotron facility in Oxfordshire and the European Synchrotron Radiation Facility (ESRF) in Grenoble.”

At Diamond, co-author Professor So Iwata and colleagues from Imperial College London’s Department of Life Sciences imaged the transporter protein Microbacterium hydantoin permease (Mhp1) - which lives in the oily membrane that surrounds bacterial cells – transporting molecules of hydantoin across its otherwise impermeable cell membrane. Once inside the cell, these molecules are converted to useful amino acids, which are of commercial importance, as they are used for food and drink supplements and to make pharmaceuticals.

The structure of Mhp1 was analysed both before and after it had taken in a hydantoin molecule from outside the cell. The researchers saw that the Mhp1 protein opens up on its outer-facing side, allowing the hydantoin molecule to move inside. Once the hydantoin is bound, the pathway closes behind it, ensuring that no other substances are let in. The inward-facing side then opens to release the hydantoin into the cell.

Commenting on the significance of the discovery, Professor Iwata says: “Our research has revealed the detailed molecular function of an important membrane protein. We now know how the protein facilitates the movement of hydantoin across the cell membrane without letting any other substances through at the same time. This mechanism is likely to be shared by many cell membrane transport proteins, including those in the human body, so this is an important step forward in our understanding of the fundamental processes which occur in our cells.”

The research was funded in the UK by the BBSRC and the EU and carried out in collaboration with scientists from Japan and Iran.

The function of Mhp1 was initially discovered during a two year visit to Leeds – which began in 2000 - by a Japanese researcher, Dr Suzuki, from Ajinomoto Inc. This work was patented in Japan and the USA.

Professor Peter Henderson adds: “We hope now to gain sufficient detail of the intimate structure of many transporter proteins to help chemists and industrial sponsors to design and develop drugs to manipulate their activities and treat a variety of diseases.”

Clare Elsley | alfa
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>