Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CRI scientists pinpoint gene likely to promote childhood cancers

12.08.2014

Researchers at the Children’s Medical Center Research Institute at UT Southwestern (CRI) have identified a gene that contributes to the development of several childhood cancers, in a study conducted with mice designed to model the cancers. If the findings prove to be applicable to humans, the research could lead to new strategies for targeting certain childhood cancers at a molecular level. The study was published today in the journal Cancer Cell.

“We and others have found that Lin28b – a gene that is normally turned on in fetal but not adult tissues – is expressed in several childhood cancers, including neuroblastoma, Wilms’ tumor and hepatoblastoma, a type of cancer that accounts for nearly 80 percent of all liver tumors in children,” said Dr. Hao Zhu, a principal investigator at CRI, and Assistant Professor of Pediatrics and Internal Medicine at UT Southwestern Medical Center.


This is Dr. Hao Zhu.

Credit: UT Southwestern

“In our study, we found that overproduction of Lin28b specifically causes hepatoblastoma, while blocking Lin28b impairs the cancer’s growth. This opens up the possibility that pediatric liver cancer patients could one day be treated without resorting to chemotherapy.”

Lin28b is an attractive therapeutic target in cancer because it is ordinarily only expressed in embryos, so blocking it in children should specifically hinder cancer growth without introducing many side effects.

... more about:
»CRI »Medical »fetal »genes »liver »neuroblastoma

Each year in the United States, 700 children are newly diagnosed with neuroblastoma, 500 with Wilms’ tumor and 100 with hepatoblastoma. At Children’s Medical Center in Dallas, more than 100 children have been treated for those three types of cancers over the last two years.

Previous studies found that Lin28b is a critical factor in stem cell and fetal tissue development, leading Dr. Zhu and his team to hypothesize that the same gene would play a significant role in the development of certain cancers.

“We looked at Lin28b in a multitude of ways in mice to study its effects on cancer, from increasing it significantly to deleting it,” said Dr. Zhu, co-senior author of the paper. “From this and earlier studies, it appears that Lin28b activates the metabolic pathways that provide the building blocks of growth for certain cancers.”

The next step for the Zhu lab is to establish whether genes related to Lin28b have similar effects on the development of cancer, and to determine if those genes might be more effective targets for potential therapies.

Dr. George Daley, Professor of Hematology at Children’s Hospital Boston, is co-senior author of the paper. The work in the Zhu lab was supported by the National Institutes of Health, the Burroughs Wellcome Fund, the Cancer Prevention and Research Institute of Texas and donors to the Children’s Medical Center Foundation.

About CRI

Children’s Medical Center Research Institute at UT Southwestern (CRI) is a joint venture established in 2011 to build upon the comprehensive clinical expertise of Children’s Medical Center of Dallas and the internationally recognized scientific excellence of UT Southwestern Medical Center. CRI’s mission is to perform transformative biomedical research to better understand the biological basis of disease, seeking breakthroughs that can change scientific fields and yield new strategies for treating disease. Located in Dallas, Texas, CRI is creating interdisciplinary groups of exceptional scientists and physicians to pursue research at the interface of regenerative medicine, cancer biology and metabolism, fields that hold uncommon potential for advancing science and medicine. More information about CRI is available on its website: cri.utsw.edu

Randy Sachs | Eurek Alert!

Further reports about: CRI Medical fetal genes liver neuroblastoma

More articles from Life Sciences:

nachricht Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools
30.06.2016 | Rice University

nachricht A protein coat helps chromosomes keep their distance
30.06.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>