Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CRI scientists pinpoint gene likely to promote childhood cancers

12.08.2014

Researchers at the Children’s Medical Center Research Institute at UT Southwestern (CRI) have identified a gene that contributes to the development of several childhood cancers, in a study conducted with mice designed to model the cancers. If the findings prove to be applicable to humans, the research could lead to new strategies for targeting certain childhood cancers at a molecular level. The study was published today in the journal Cancer Cell.

“We and others have found that Lin28b – a gene that is normally turned on in fetal but not adult tissues – is expressed in several childhood cancers, including neuroblastoma, Wilms’ tumor and hepatoblastoma, a type of cancer that accounts for nearly 80 percent of all liver tumors in children,” said Dr. Hao Zhu, a principal investigator at CRI, and Assistant Professor of Pediatrics and Internal Medicine at UT Southwestern Medical Center.


This is Dr. Hao Zhu.

Credit: UT Southwestern

“In our study, we found that overproduction of Lin28b specifically causes hepatoblastoma, while blocking Lin28b impairs the cancer’s growth. This opens up the possibility that pediatric liver cancer patients could one day be treated without resorting to chemotherapy.”

Lin28b is an attractive therapeutic target in cancer because it is ordinarily only expressed in embryos, so blocking it in children should specifically hinder cancer growth without introducing many side effects.

... more about:
»CRI »Medical »fetal »genes »liver »neuroblastoma

Each year in the United States, 700 children are newly diagnosed with neuroblastoma, 500 with Wilms’ tumor and 100 with hepatoblastoma. At Children’s Medical Center in Dallas, more than 100 children have been treated for those three types of cancers over the last two years.

Previous studies found that Lin28b is a critical factor in stem cell and fetal tissue development, leading Dr. Zhu and his team to hypothesize that the same gene would play a significant role in the development of certain cancers.

“We looked at Lin28b in a multitude of ways in mice to study its effects on cancer, from increasing it significantly to deleting it,” said Dr. Zhu, co-senior author of the paper. “From this and earlier studies, it appears that Lin28b activates the metabolic pathways that provide the building blocks of growth for certain cancers.”

The next step for the Zhu lab is to establish whether genes related to Lin28b have similar effects on the development of cancer, and to determine if those genes might be more effective targets for potential therapies.

Dr. George Daley, Professor of Hematology at Children’s Hospital Boston, is co-senior author of the paper. The work in the Zhu lab was supported by the National Institutes of Health, the Burroughs Wellcome Fund, the Cancer Prevention and Research Institute of Texas and donors to the Children’s Medical Center Foundation.

About CRI

Children’s Medical Center Research Institute at UT Southwestern (CRI) is a joint venture established in 2011 to build upon the comprehensive clinical expertise of Children’s Medical Center of Dallas and the internationally recognized scientific excellence of UT Southwestern Medical Center. CRI’s mission is to perform transformative biomedical research to better understand the biological basis of disease, seeking breakthroughs that can change scientific fields and yield new strategies for treating disease. Located in Dallas, Texas, CRI is creating interdisciplinary groups of exceptional scientists and physicians to pursue research at the interface of regenerative medicine, cancer biology and metabolism, fields that hold uncommon potential for advancing science and medicine. More information about CRI is available on its website: cri.utsw.edu

Randy Sachs | Eurek Alert!

Further reports about: CRI Medical fetal genes liver neuroblastoma

More articles from Life Sciences:

nachricht Fruit fly studies shed light on adaptability of nerve cells
17.04.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Rare monkey photographed in Congo's newest national park, Ntokou-Pikounda
17.04.2015 | Wildlife Conservation Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>