Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting duplicated genome segments now possible

01.09.2009
Numbers can vary from person to person

A newly designed computational method has proven its usefulness in counting copies of duplicated genome sequences and in doing initial assessments of their contents, according to a study to be published Aug. 30 in Nature Genetics. The number of copies of particular DNA segments can differ from one person to the next.

The researchers named their method mrFAST, an acronym for micro-read Fast Alignment Search Tool. The study is titled, "Personalized Copy Number and Segmental Duplication Maps Using Next Generation Sequencing." The lead authors are Dr. Can Alkan, a senior fellow, and Jeffrey M. Kidd, a graduate student, both in the Department of Genome Sciences at the University of Washington (UW). Dr. Evan E. Eichler, UW professor of genome sciences, is the senior author.

Segmental duplications in the human genome have been associated with susceptibility and resistance to disease. Duplicated segments have been linked to such disorders as lupus, Crohn's disease, mental retardation, schizophrenia, color blindness, psoriasis, and age-related macular degeneration. Segmental duplications often contain duplicated genes, many of which have an unknown function. Individuals have different numbers of copies of some of these duplications. Determining the number, content, and location of segmental duplications is an important step in understanding the health significance of gene copy-number variation.

"New computational methods, combined with next-generation DNA sequencing technology, has provided for the first time an accurate census of specific genes that exist in varying number of copies," Alkan said.

"This is a way to deal with some of the most complex regions of the human genome and do what might appear to be a simple thing: Count whether a person has one, two, three or more copies of a gene," explained Kidd. "In fact, such counting is surprisingly difficult." Many standard genome analyses exclude duplication-rich or repeat-rich regions of the human genomes because their sequences are not unique.

Before this study, by using different methods scientists could analyze the entire genome of a person and say that an individual has more or fewer copies of a particular gene, but not the absolute number of copies. For example, scientists have known that some people have an increased copy-number of a gene that confer some resistance to HIV, but couldn't tell how many.

The UW researchers further examined the much-studied genomes from three healthy individuals: a European (DNA research pioneer James D. Watson), a Yoruban African individual from Nigeria, and a Han Chinese. The researchers were able to predict copy-number differences among the individuals, even when there were many copies, such as 5 in one person compared to 12 in another. The researchers conservatively validated 113 genes that were copy-number variable among the three people, but more genes are suspected to be copy-number variable. Several of the validated gene differences are known to be of biomedical relevance. They include, for example, genes related to eye and skin diseases, and many others that play a role in the immune system. The researchers noted that several human genes with the most variable copy numbers correspond to a torrent of segmental duplications that occurred within the common ancestor of apes and humans.

In talking about their study, the researchers mentioned that next-generation technology for sequencing the human genome has far greater detection power and costs substantially less than the traditional sequencing method known as Sanger sequencing. The new technologies are beginning to distinguish subtle dissimilarities between nearly identical gene copies.

"This can provide researchers with a more accurate assessment of specific gene content and insight into functional constraints," Alkan explained.

"The newer, faster genome sequencing platforms," Alkan added, "may eventually make it feasible to detect the full-spectrum of genomic variation among many individuals, including patients suffering from diseases of genetic origin. Next-generation technology and computational methods promise low cost, rapid sequencing of different individuals and may lead to a fuller understanding of the patterns and significance of human genetic variation."

The analytical method they devised is already being tapped for the 1000 Genome Project, an international effort to catalog and compare the genomes of hundreds of people from around the world.

Alkan, Kidd, and their colleagues noted that copy number variants, including variable duplications of entire genes, are recognized as making substantial contributions to human diversity.

The ability to accurately and systematically determine the absolute copy number for any genomic segment is a notable step, the researchers added, toward a true and complete picture of individual genomes and how the genome shapes a person's characteristics.

"The next challenge," they wrote, "will be defining variation in the sequence content and the structural organization of these dynamic and important regions of the human genome."

In addition to Alkan and Kidd, other scientists working on the project were Tomas Marques-Bonet, Gozde Aksay, Francesca Antonacci, Jacob O. Kitzman, Carl Baker, Maika Malig, and Evan E. Eichler from UW Genome Sciences; Fereydoun Hormozdiari, and S. Cenk Sahinalp from Simon Fraser University School of Computing Sciences; Onur Mutlu from the Department of Electrical and Computer Engineering, Carnegie Mellon University; and Richard Gibbs from Baylor College of Medicine.

The research was supported by the U.S. National Science Foundation, the National Institutes of Health and the Howard Hughes Medical Institute.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>