Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Core knowledge of tree fruit expands with apple genome sequencing

30.08.2010
Apple Cup rivals collaborate on world's main fruit crop

An international team of scientists from Italy, France, New Zealand, Belgium and the USA have published a draft sequence of the domestic apple genome in the current issue of Nature Genetics.

The availability of a genome sequence for apple will allow scientists to more rapidly identify which genes provide desirable characteristics to the fruit and which genes and gene variants provide disease or drought resistance to the plant. This information can be used to rapidly improve the plants through more informed selective breeding.

An organism's genome is the total of all its genetic information, including genes. Genes carry information that determines, among other things, a plant's appearance, health, productivity and color and taste of the fruit.

The domestic apple is the main fruit crop of the world's temperate regions. Apple is a member of the plant family Rosaceae which includes many other economically important species, including cherry, pear, peach, apricot, strawberry, and rose, to name just a few.

The state of Washington accounts for approximately 60 percent of total apple production in the U.S. and Rosaceae fruit production is a multi-billion dollar industry in the state. Washington state scientists played an important role in the project.

Led by Washington State University horticultural genomicist Amit Dhingra, the Washington-based team sequenced and analyzed a unique version of the genome of the golden delicious apple in which all duplicated chromosomes are genetically identical. This information was used to validate the sequence of the more complicated "heterozygous" golden delicious apple (in which duplicated chromosomes are not identical).

"Before genome sequencing, the best we could do was correlate traits with genes. Now we can point to a specific gene and say, 'This is the one; this gene is responsible for this trait'. That trait of interest might be, for instance, a disease, which is why sequencing the human genome was such an important milestone. Or the trait might be for something desirable, like flavor in a piece of fruit. We are already working on finding physiological solutions to issues like bitter pit in current apple varieties with the gene-based information available to us and lay a foundation for improved varieties in the future through generation of sports (mutations) and breeding," Dhingra said.

The Washington state contribution to the sequencing work was a unique collaboration between the cross-state Apple Cup rivals of WSU and the University of Washington.

Microbiologist Roger Bumgarner's lab at the University of Washington provided the initial sequencing expertise and capability to the project, which was later complemented and replaced by sequencing expertise in the Dhingra genomics lab, who obtained the same DNA sequencing instrument used in Dr. Bumgarner's lab.

"UW is a world leader in medical research and WSU is a world leader in agricultural research," said Bumgarner. "Technological advancements and techniques initially used to study medically important genomes and problems can be rapidly applied to genomes and problems of agricultural importance. We both had something to contribute and to learn from one another. I think there are many more opportunities for such collaborations to develop in the coming years."

After the sequencing was completed, WSU computational biologist Ananth Kalyanaraman contributed to the analysis by comparing the apple genome with that of pear, peach and grape to identify the differences and commonalities that exist between these fruit crops.

While the apple genome provides a valuable resource for future research, one pressing question answered by the international team's paper in Nature Genetics was one of origin. Scientists have long wanted to know — and have for years argued vehemently about — the ancestor of the modern domesticated apple. The question is now settled: Malus sieversii, native to the mountains of southern Kazakhstan, is the apple's wild ancestor. Now that that question is settled, scientists will begin using the apple genome to help breed apples with desirable new traits, including disease resistance and, potentially, increased health-benefitting qualities.

"Having the apple genome sequence will greatly accelerate our ability to define the differences between apple cultivars at the genetic level," said Kate Evans, an apple breeder based at the WSU Tree Fruit Research and Extension Center. "This will allow us to exploit these differences and target areas of diversity to incorporate into the breeding program, resulting in improved cultivars for the consumers that are also better suited for long-term, sustainable production."

Dan Bernardo, dean of the WSU College of Agricultural, Human, and Natural Resource Sciences, said, "The Washington apple is an icon of quality around the globe. This is a natural home for the advanced science necessary to map the tree fruit genome and actively study how it functions."

Brian Clark | EurekAlert!
Further information:
http://www.wsu.edu

Further reports about: Apple iPhone Core Cup Genetics Nature Immunology gene variant genome sequence

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>