Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Core knowledge of tree fruit expands with apple genome sequencing

30.08.2010
Apple Cup rivals collaborate on world's main fruit crop

An international team of scientists from Italy, France, New Zealand, Belgium and the USA have published a draft sequence of the domestic apple genome in the current issue of Nature Genetics.

The availability of a genome sequence for apple will allow scientists to more rapidly identify which genes provide desirable characteristics to the fruit and which genes and gene variants provide disease or drought resistance to the plant. This information can be used to rapidly improve the plants through more informed selective breeding.

An organism's genome is the total of all its genetic information, including genes. Genes carry information that determines, among other things, a plant's appearance, health, productivity and color and taste of the fruit.

The domestic apple is the main fruit crop of the world's temperate regions. Apple is a member of the plant family Rosaceae which includes many other economically important species, including cherry, pear, peach, apricot, strawberry, and rose, to name just a few.

The state of Washington accounts for approximately 60 percent of total apple production in the U.S. and Rosaceae fruit production is a multi-billion dollar industry in the state. Washington state scientists played an important role in the project.

Led by Washington State University horticultural genomicist Amit Dhingra, the Washington-based team sequenced and analyzed a unique version of the genome of the golden delicious apple in which all duplicated chromosomes are genetically identical. This information was used to validate the sequence of the more complicated "heterozygous" golden delicious apple (in which duplicated chromosomes are not identical).

"Before genome sequencing, the best we could do was correlate traits with genes. Now we can point to a specific gene and say, 'This is the one; this gene is responsible for this trait'. That trait of interest might be, for instance, a disease, which is why sequencing the human genome was such an important milestone. Or the trait might be for something desirable, like flavor in a piece of fruit. We are already working on finding physiological solutions to issues like bitter pit in current apple varieties with the gene-based information available to us and lay a foundation for improved varieties in the future through generation of sports (mutations) and breeding," Dhingra said.

The Washington state contribution to the sequencing work was a unique collaboration between the cross-state Apple Cup rivals of WSU and the University of Washington.

Microbiologist Roger Bumgarner's lab at the University of Washington provided the initial sequencing expertise and capability to the project, which was later complemented and replaced by sequencing expertise in the Dhingra genomics lab, who obtained the same DNA sequencing instrument used in Dr. Bumgarner's lab.

"UW is a world leader in medical research and WSU is a world leader in agricultural research," said Bumgarner. "Technological advancements and techniques initially used to study medically important genomes and problems can be rapidly applied to genomes and problems of agricultural importance. We both had something to contribute and to learn from one another. I think there are many more opportunities for such collaborations to develop in the coming years."

After the sequencing was completed, WSU computational biologist Ananth Kalyanaraman contributed to the analysis by comparing the apple genome with that of pear, peach and grape to identify the differences and commonalities that exist between these fruit crops.

While the apple genome provides a valuable resource for future research, one pressing question answered by the international team's paper in Nature Genetics was one of origin. Scientists have long wanted to know — and have for years argued vehemently about — the ancestor of the modern domesticated apple. The question is now settled: Malus sieversii, native to the mountains of southern Kazakhstan, is the apple's wild ancestor. Now that that question is settled, scientists will begin using the apple genome to help breed apples with desirable new traits, including disease resistance and, potentially, increased health-benefitting qualities.

"Having the apple genome sequence will greatly accelerate our ability to define the differences between apple cultivars at the genetic level," said Kate Evans, an apple breeder based at the WSU Tree Fruit Research and Extension Center. "This will allow us to exploit these differences and target areas of diversity to incorporate into the breeding program, resulting in improved cultivars for the consumers that are also better suited for long-term, sustainable production."

Dan Bernardo, dean of the WSU College of Agricultural, Human, and Natural Resource Sciences, said, "The Washington apple is an icon of quality around the globe. This is a natural home for the advanced science necessary to map the tree fruit genome and actively study how it functions."

Brian Clark | EurekAlert!
Further information:
http://www.wsu.edu

Further reports about: Apple iPhone Core Cup Genetics Nature Immunology gene variant genome sequence

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>