Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control by the matrix: RUB researchers decipher the role of proteins in the cell environment

12.12.2011
Control by the matrix
Development: how specific cells are generated in the spinal cord
RUB researchers decipher the role of proteins in the cell environment

How astrocytes, certain cells of the nervous system, are generated was largely unknown up to now. Bochum’s researchers have now investigated what influence the cell environment, known as the extracellular matrix, has on this process.


Under suitable conditions, precursor cells in the nervous system (red) transform into other cell types, e.g. astrocytes (green). A fluorescence microscope image of a precursor cell culture is shown in which all cell nuclei are stained blue
Illustration: Dr. Michael Karus


The researchers from Bochum cultivated precursor cells of the nervous system as free-floating colonies called neurospheres. In the fluorescence microscope image, precursor cells are stained green, cell nuclei blue. In the neurosphere, there are also large amounts of a sugar residue (red), which is considered the classical marker for stem cells. Illustration: Dr. Michael Karus

They found out that the matrix protein tenascin C has to be present in order for astrocytes to multiply and distribute in a controlled fashion in the spinal cord of mice. Together with colleagues from the RWTH Aachen, the scientists from RUB Department of Cell Morphology and Molecular Neurobiology report their findings in the journal Development.

Tenascin C regulates astrocyte development

Immature astrocytes produce tenascin C and secrete it into the extracellular matrix. From there, it controls the development of the cells. To characterise the role of the protein more precisely, the Bochum team lead by Prof. Dr. Andreas Faissner, Prof. Dr. Stefan Wiese and Dr. Michael Karus analysed astrocytes that were genetically manipulated so that they did not produce tenascin C. The scientists observed that the astrocytes without the protein divided for a longer period of time, and migrated later to their destination in the spinal cord. “As a consequence of the longer cell division phase, we found an increased number of mature astrocytes” explained Karus.

Gene activity altered

Also at the molecular level, the tenascin C manipulation leaves its mark. With colleagues at the RWTH Aachen, Bochum’s researchers compared the gene activity in the spinal cord with and without tenascin C production. The absence of the protein not only affected genes that are typical of astrocytes. The scientists also documented expression level changes of genes that play a role for specific growth factors. These have an influence, for example, on the survival and division activity of different cell types.

Results also interesting for medical applications

Astrocytes take on a variety of tasks in the nervous system. They regulate the ion balance and the concentration of neurotransmitters, are part of the blood-brain barrier, and influence the activity of the nerve cells. In case of injuries to the central nervous system, or brain tumours, they form what are known as reactive astrocytes, which behave similarly to immature astrocytes. “So far, the function of tenascin C under such pathological conditions is largely unknown” said Karus. “However, if we find out more about the role of tenascin C during development, we will probably be able to better understand what affect it has, for example in spinal cord injuries.”

Bibliographic record

M. Karus, B. Denecke, C. ffrench-Constant, S. Wiese, A. Faissner (2011): The extracellular matrix molecule tenascin C modulates expression levels and territories of key patterning genes during spinal cord astrocyte specification, Development, doi: 10.1242/dev.067413

Further information

Dr. Michael Karus, Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Tel.: +49/234/32-24312

Michael.Karus@ruhr-uni-bochum.de

Click for more

Department of Cell Morphology and Molecular Neurobiology
http://dbs-lin.ruhr-uni-bochum.de/cellmorphology/index.php?&language=en
Editor
Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>