Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer-Aided Influenza Virus Vaccine Created

18.06.2010
A team of molecular biologists and computer scientists at Stony Brook University have used a novel method to weaken (attenuate) influenza virus by way of designing hundreds of mutations to its genetic code to create an effective vaccine. Reported online and in the July issue of Nature Biotechnology, the method may be a major step in developing more effective and safe vaccines against influenza, which claims 250,000 to 500,000 lives annually worldwide, partly because existing vaccines are not fully effective.

The research is an outgrowth of years of investigation by a team headed by Eckard Wimmer, Ph.D., Distinguished Professor, Department of Molecular Genetics and Microbiology at Stony Brook University. In 2002, Dr. Wimmer and colleagues synthesized and generated poliovirus, the first artificial synthesis of any virus.

Two years ago, they designed and synthesized a new class of attenuated polio viruses. Viruses attenuated by traditional means often make effective vaccines but sometimes mutate to regain virulence. The creation of synthetic viruses nearly eliminates the possibility of the virus regaining virulence.

In their latest research, the same method that the team used to create weakened synthetic polio viruses was employed to design an influenza vaccine. They found this vaccine effective and safe against influenza in mice.

“Essentially, we have rewritten the virus’ genetic instructions manual in a strange dialect of genetic code that is difficult for the host cell machinery to understand,” says Steffen Mueller, Ph.D., Senior Author and Research Assistant Professor of Molecular Genetics and Microbiology. “This poor line of communication leads to inefficient translation of viral protein and, ultimately, to a very weak virus that proves to be ideal for immunization.”

Dr. Mueller and colleagues made a synthetic influenza virus (strain A/PR/8/34) containing hundreds of changes in its genetic code. The changes they chose are commonly referred to as “silent” mutations because they do not alter the proteins that the virus produces. However, through computer algorithms developed by the researchers, mutations are arranged such that the resulting viral genome will produce less of those proteins, a process called “de-optimization,” a weakening of the virus.

“We used our ‘death by a thousand cuts’ method to create the mutated synthetic virus,” says Dr. Mueller. “Because the synthetic sequence contains hundreds of changes, the synthetic virus has essentially no possibility of regaining virulence.”

The researchers call the process “Synthetic Attenuated Virus Engineering,” or “SAVE.” They believe the SAVE approach can be applied to any emerging influenza virus strain. If shown applicable to influenza in humans, the SAVE method could become an essential tool in developing vaccines that may be effective against seasonal and pandemic influenza threats.

The Stony Brook team discovered that very small amounts of the new synthetic influenza virus safely and effectively immunized mice against an otherwise lethal virus strain. The synthetic virus did not cause disease in the animals unless given at doses about 1000-fold higher than the dose needed for immunization.

Titled “Live attenuated influenza virus vaccines by computer-aided rational design,” the journal piece summarizes the researchers’ scientific approach to developing synthetic virus vaccines. The research is supported in part by grants from the National Institutes of Health and Stony Brook University.

Dr. Mueller’s co-authors include: Eckard Wimmer, Ph.D., J. Robert Coleman, Ph.D., Anjaruwee Nimnual, Ph.D., and Bruce Futcher, Ph.D., of the SBU Department of Molecular Genetics and Microbiology; and Dimitris Papamichail, Ph.D., Charles B. Ward, Ph.D., and Steven Skiena, Ph.D., of the SBU Department of Computer Science.

Greg Filiano | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>