Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compounds that help protect nerve cells discovered by Duke team

20.01.2010
Scientists at Duke University Medical Center have found some compounds that improve a cell's ability to properly "fold" proteins and could lead to promising drugs for degenerative nerve diseases, including Huntington's disease, Alzheimer's disease and Parkinson's disease.

Misfolded proteins in nerve cells (neurons) are a common factor in all of these diseases. The Duke team has identified many new chemicals that activate a master regulator to increase the supply of "protein chaperone" molecules that help fold proteins properly.

The scientists further explored one of the candidate molecules to activate the master regulator of chaperone gene expression, Heat Shock Factor 1 (HSF1), to learn whether it would work in model systems of Huntington's disease, a devastating neurodegenerative disease of protein misfolding.

They were able to show that the molecule stimulated protein chaperones in cells and in an animal system. The damage to early-state rat neurons was much lower in cells pre-treated with the HSF1 activator, and damage to the neurons of fruit flies that had a Huntington's-like disorder was also greatly reduced.

Previous studies suggested that elevating the abundance of protein chaperones is effective in treating cell and animal models of Huntington's and Parkinson's diseases. This work provides a new approach to address the root cause of these diseases -- protein misfolding. Earlier attempts had used heat shock and other approaches that stress a nerve cell in order to produce more chaperone molecules, but at a cost of damaging the cell to save it.

"The advantage of our screen is that it identifies molecules that can elevate the levels of chaperones without inducing cellular stress and that don't inhibit a key protein chaperone called Hsp90 that is needed for cells to function normally," said senior author Dennis J. Thiele, Ph.D., Professor of Pharmacology and Cancer Biology. "We found a creative way to identify new molecules that can activate the body's natural protein folding machinery."

The research was published in the Jan. 19 online issue of PLoS Biology.

Lead author Daniel Neef, Ph.D., says they used genetically altered yeast to find compounds that might aid chaperone development. The scientists took yeast with a deleted HSF1 (master regulator) gene and inserted the related human HSF1 gene. These yeast, however, still weren't able to activate human HSF1 on their own, and in effect, died. They needed an additional molecule to make human HSF1 become active.

The team put these "humanized yeasts" into wells and started testing compounds that would provide the missing link. In several of the wells, if the compound worked, the yeast started multiplying. "Out of over 12,000 compounds tested from chemical libraries, about 50 compounds worked," Neef said. The team decided to explore one of these compounds (HSF1A) in further experiments.

"The humanized yeast-based screening results in our study provide a way to identify new classes of small molecules, small enough to penetrate the blood-brain barrier to work in neurons, in flies as well as in humans," Thiele said. "These small molecules may be effective therapies in neurodegenerative diseases caused by protein conformational disorders such as Huntington's, Alzheimer's and Parkinson's disease."

The scientists found that HSF1A could stimulate more protein chaperones and reduce the protein misfolding. They showed that adding a small amount of HSF1A to the developing rat neurons kept the proteins dissolved throughout the cell, rather than clumping visibly as speckled areas (as seen under microscopes).

"We enhanced the cells' viability by four or five times by pre-treating them with this molecule," Neef said. "Otherwise, the cells would have died."

They used fruit flies with Huntington's disease for experiments to prove that the principle would work in an animal. Adding HSF1A to the fly's food produced more chaperone molecules in their neurons. This suggests that the molecule could travel from the fly's stomach into its circulation and cross a barrier to the fly brain.

In the key experiment, the Huntington's disease flies received either their usual food or food plus HSF1A. Those with untreated food developed eyes with dying photoreceptor neurons and lacking the normal red color. Those that ate HSF1A went on to have normal-colored eyes, indicating a repair had taken place, just by eating food laced with the promising compound.

Michelle Turski, now with Stanford University, was a co-author of the study. The work was supported by grants from the National Institutes of Health.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>