Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound kills highly contagious flu strain by activating antiviral protein

26.09.2011
A compound tested by UT Southwestern Medical Center investigators destroys several viruses, including the deadly Spanish flu that killed an estimated 30 million people in the worldwide pandemic of 1918.

This lead compound - which acts by increasing the levels of a human antiviral protein - could potentially be developed into a new drug to combat the flu, a virus that tends to mutate into strains resistant to anti-influenza drugs.

"The virus is 'smart' enough to bypass inhibitors or vaccines sometimes. Therefore, there is a need for alternative strategies. Current drugs act on the virus, but here we are uplifting a host/human antiviral response at the cellular level," said Dr. Beatriz Fontoura, associate professor of cell biology and senior author of the study available online in Nature Chemical Biology.

According to National Institutes of Health, influenza hospitalizes more than 200,000 people in the U.S. each year, with about 36,000 fatalities related to the illness. Worldwide, flu kills about 500,000 people annually.

In the latest cell testing, the compound successfully knocked out three types of influenza as well as a smallpox-related virus and an animal virus. Because of the highly contagious nature of the 1918 flu, those tests took place at Mount Sinai School of Medicine in New York, one of the few places that stores and runs tests on that flu strain.

The compound is among others that the research team is testing that induce an infection-fighting human protein called REDD1. Until this study, researchers had not demonstrated that REDD1 had this important antiviral function.

"We've discovered that REDD1 is a key human barrier for infection," said Dr. Fontoura, "Interestingly, REDD1 inhibits a signaling pathway that regulates cell proliferation and cancer."

The UT Southwestern-led research team tested 200,000 compounds for those that would inhibit flu virus infection. A total of 71 were identified.

Using the two most promising compounds, researchers at UT Southwestern and colleagues at Mount Sinai next will work to strengthen their potencies for further testing. Dr. Fontoura said it can take more than 10 years before successful compounds are developed into drugs.

UT Southwestern researchers involved in the study were lead author Miguel Mata and Neal Satterly, both graduate students in Dr. Fontoura's laboratory; Dr. Doug Frantz, former assistant professor of biochemistry; Shuguang Wei, a senior researcher in biochemistry; Dr. Noelle Williams, associate professor of biochemistry; Samuel Pena-Llopis, assistant instructor in developmental biology; Dr. James Brugarolas, assistant professor of internal medicine; Dr. Christian Forst, assistant professor of clinical sciences; Dr. Michael White, professor of cell biology; and Dr. Michael Roth, professor of biochemistry.

The research was supported by nine National Institutes of Health grants and by the Diane and Hal Brierley Distinguished Chair Fund.

Visit http://www.utsouthwestern.org/infectious to learn more about UT Southwestern's clinical services for infectious diseases and conditions.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at http://www.utsouthwestern.edu/receivenews

Debbie Bolles | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: REDD1 Sinai Southwestern cell biology compound health services

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>