Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound kills highly contagious flu strain by activating antiviral protein

26.09.2011
A compound tested by UT Southwestern Medical Center investigators destroys several viruses, including the deadly Spanish flu that killed an estimated 30 million people in the worldwide pandemic of 1918.

This lead compound - which acts by increasing the levels of a human antiviral protein - could potentially be developed into a new drug to combat the flu, a virus that tends to mutate into strains resistant to anti-influenza drugs.

"The virus is 'smart' enough to bypass inhibitors or vaccines sometimes. Therefore, there is a need for alternative strategies. Current drugs act on the virus, but here we are uplifting a host/human antiviral response at the cellular level," said Dr. Beatriz Fontoura, associate professor of cell biology and senior author of the study available online in Nature Chemical Biology.

According to National Institutes of Health, influenza hospitalizes more than 200,000 people in the U.S. each year, with about 36,000 fatalities related to the illness. Worldwide, flu kills about 500,000 people annually.

In the latest cell testing, the compound successfully knocked out three types of influenza as well as a smallpox-related virus and an animal virus. Because of the highly contagious nature of the 1918 flu, those tests took place at Mount Sinai School of Medicine in New York, one of the few places that stores and runs tests on that flu strain.

The compound is among others that the research team is testing that induce an infection-fighting human protein called REDD1. Until this study, researchers had not demonstrated that REDD1 had this important antiviral function.

"We've discovered that REDD1 is a key human barrier for infection," said Dr. Fontoura, "Interestingly, REDD1 inhibits a signaling pathway that regulates cell proliferation and cancer."

The UT Southwestern-led research team tested 200,000 compounds for those that would inhibit flu virus infection. A total of 71 were identified.

Using the two most promising compounds, researchers at UT Southwestern and colleagues at Mount Sinai next will work to strengthen their potencies for further testing. Dr. Fontoura said it can take more than 10 years before successful compounds are developed into drugs.

UT Southwestern researchers involved in the study were lead author Miguel Mata and Neal Satterly, both graduate students in Dr. Fontoura's laboratory; Dr. Doug Frantz, former assistant professor of biochemistry; Shuguang Wei, a senior researcher in biochemistry; Dr. Noelle Williams, associate professor of biochemistry; Samuel Pena-Llopis, assistant instructor in developmental biology; Dr. James Brugarolas, assistant professor of internal medicine; Dr. Christian Forst, assistant professor of clinical sciences; Dr. Michael White, professor of cell biology; and Dr. Michael Roth, professor of biochemistry.

The research was supported by nine National Institutes of Health grants and by the Diane and Hal Brierley Distinguished Chair Fund.

Visit http://www.utsouthwestern.org/infectious to learn more about UT Southwestern's clinical services for infectious diseases and conditions.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at http://www.utsouthwestern.edu/receivenews

Debbie Bolles | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: REDD1 Sinai Southwestern cell biology compound health services

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>