Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound holds high promise in battling kidney cancer

20.02.2013
UC Riverside's Michael Pirrung announces development of TIR-199 at conference in Dubai

Chemists at the University of California, Riverside have developed a compound that holds much promise in the laboratory in fighting renal (kidney) cancer.


This image shows the compound TIR-199 that holds much promise in the laboratory in fighting renal (kidney) cancer.

Credit: Pirrung Lab, UC Riverside

Named TIR-199, the compound targets the "proteasome," a cellular complex in kidney cancer cells, similar to the way the drug bortezomib, approved by the Food and Drug Administration, targets and inhibits the proteasome in multiple myeloma cells, a cancer coming from bone marrow.

Michael Pirrung, a distinguished professor of chemistry at UC Riverside, announced the development of TIR-199 in a lecture he gave on Feb. 19 at the 5th International Conference on Drug Discovery and Therapy, held in Dubai, UAE.

Operating like the garbage dump of a cell, the proteasome breaks down proteins. Drugs that block the action of proteasomes are called proteasome inhibitors, and have been shown to have activity against a variety of cancer cell lines, albeit with mixed results. For example, bortezomib, though effective against multiple myeloma, has many side effects because cells other than bone marrow cells are affected.

"The novel feature of our new proteasome inhibitor, TIR-199, is that it is nearly as potent as bortezomib, but is selective in inhibiting the growth of only renal cancer cell lines," Pirrung said. "It's what makes TIR-199 attractive."

The TIR-199 research project at UC Riverside began about four years ago after a multidisciplinary, international team reported on a class of compounds that act on the proteasome. These compounds are the "syringolin" natural products — such as a compound produced naturally by the wheat-infecting bacterium Pseudomonas syringae. TIR-199 is a synthetic relative of syringolin.

"At UCR we began to work on, and completed the synthesis of, two compounds from this class of compounds," Pirrung said. "Of the two, TIR-199 showed most promise."

Pirrung's lab first shipped TIR-199 samples to the University of Hawaii, Hilo, where André Bachmann, an associate professor of pharmaceutical sciences and Pirrung's collaborator, studied TIR-199 in test-tube assays for how it worked against the proteasome. Bachmann then tested the compound against a limited number of cancer cell lines that showed that TIR-199 was effective against the cancer cells. What remained unclear, however, was if TIR-199 was toxic to normal cells.

Encouraged by these results, Pirrung submitted TIR-199 samples to the National Cancer Institute at the National Institutes of Health, where the compound was subjected to a rigorous 60-cell screening used routinely to test compounds for their effectiveness in battling 60 kinds of cancer, including leukemia, lung, colon, brain, breast, ovarian prostate and renal cancers.

"We were very excited when the NCI informed us that TIR-199 has excellent potential to be moved to drug development because of its selective activity against renal cancer," Pirrung said. "This is good news also because the NCI scientists told us there really are no good drugs out there to fight renal cancer."

Next, the NCI will test TIR-199 on cells grown in a hollow fiber that partially mimics the body by offering a three-dimensional environment. If the test results are positive, TIR-199 will be tested on mice.

The UCR Office of Technology Commercialization has filed a patent application on TIR-199 and is currently seeking partners in industry interested in developing the compound commercially. Several biotechnology companies have already shown interest.

"We still have to fine-tune TIR-199 in the lab because some aspects — certain structural elements within it — make it easily metabolized," Pirrung said. "But now that we have a good handle on how structural changes in the compound affect anticancer activity and how the parent drug binds to the proteasome, we are pretty confident of making a better version — the second generation — of TIR-199."

The project was funded by a grant from the University of California Institute for Mexico and the United States (UC MEXUS), to Tannya Ibarra-Rivera, a former postdoctoral researcher in Pirrung's lab who helped discover TIR-199 and after whose initials the compound is named; and to Pirrung from the UC Cancer Research Coordinating Committee.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: Drug Delivery Dubai NCI Pirrung Riverside UCR bone marrow cancer cells doctoral research

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>