Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CNIO researchers discover that a gene known to protect against cancer can also promote tumor growth

13.03.2012
The authors, from Oscar Fernandez Capetillo's group, have identified this double-edged property in the gene Chk1, an established tumor suppressor

Can a gene simultaneously protect against cancer and favor its growth? Researchers at the Spanish National Cancer Research Centre have discovered a gene with this double-edged property and suspect there may be many more that share it. In the words of Oscar Fernandez Capetillo, head of the group responsible for the study, this gene "can be both Dr. Jekyll and Mr. Hyde, in that it can either protect us against the appearance of tumors or promote tumor growth".

The study, appears this week in the Journal of Experimental Medicine, with Andreìs J. Loìpez-Contreras and Paula Gutieìrrez Martiìnez as first authors, focuses on the activity of Chk1, a gene known for its tumour suppressing effect. It is what Fernaìndez-Capetillo calls "a genome guardian, a gene that keeps our genome free of mutations and, therefore, protects against the development of tumours".

The team wished to ascertain whether the tumour-protective effect of Chk1 was magnified in organisms with a larger quantity of the protein it codes for, so they created a mouse with three copies of the gene instead of the normal two. They then extracted and cultured the animal's cells and turned them cancerous with the aid of other genes. What they observed confounded all expectations: the cells became malignant more easily when carrying an extra copy of Chk1.

The reason for this paradox is that Chk1 has a beneficial effect on healthy cells, but also benefits tumour cells once they have established themselves in the body.

The dual role of Chk1

"Initially, Chk1 prevents the appearance of tumours, by limiting the spontaneous mutations that take place in our cells", remarks Fernaìndez Capetillo. "This is the Dr. Jekyll side. However, advanced tumours exhibit extensive damage to their DNA and it is here that Chk1 comes to the tumour's aid by reducing the damage built up in its genome", he continues.

Chk1 works by protecting against replicative stress, a kind of damage that occurs in cells' genetic material as they divide. Some tumours indeed suffer continuous lesions in their genome due to their high division rates.

"The presence of 'genome guardians' like Chk1 may favour the growth of this kind of tumour by lessening its lesion load", explains Loìpez-Contreras.

"This study sheds light on why Chk1 is overexpressed in many tumours, when we would intuitively suppose that what favours the development of cancer is the loss of protective genes," the scientist concludes.

Juan J. Gómez | EurekAlert!
Further information:
http://www.cnio.es

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>