Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CNIO researchers discover that a gene known to protect against cancer can also promote tumor growth

13.03.2012
The authors, from Oscar Fernandez Capetillo's group, have identified this double-edged property in the gene Chk1, an established tumor suppressor

Can a gene simultaneously protect against cancer and favor its growth? Researchers at the Spanish National Cancer Research Centre have discovered a gene with this double-edged property and suspect there may be many more that share it. In the words of Oscar Fernandez Capetillo, head of the group responsible for the study, this gene "can be both Dr. Jekyll and Mr. Hyde, in that it can either protect us against the appearance of tumors or promote tumor growth".

The study, appears this week in the Journal of Experimental Medicine, with Andreìs J. Loìpez-Contreras and Paula Gutieìrrez Martiìnez as first authors, focuses on the activity of Chk1, a gene known for its tumour suppressing effect. It is what Fernaìndez-Capetillo calls "a genome guardian, a gene that keeps our genome free of mutations and, therefore, protects against the development of tumours".

The team wished to ascertain whether the tumour-protective effect of Chk1 was magnified in organisms with a larger quantity of the protein it codes for, so they created a mouse with three copies of the gene instead of the normal two. They then extracted and cultured the animal's cells and turned them cancerous with the aid of other genes. What they observed confounded all expectations: the cells became malignant more easily when carrying an extra copy of Chk1.

The reason for this paradox is that Chk1 has a beneficial effect on healthy cells, but also benefits tumour cells once they have established themselves in the body.

The dual role of Chk1

"Initially, Chk1 prevents the appearance of tumours, by limiting the spontaneous mutations that take place in our cells", remarks Fernaìndez Capetillo. "This is the Dr. Jekyll side. However, advanced tumours exhibit extensive damage to their DNA and it is here that Chk1 comes to the tumour's aid by reducing the damage built up in its genome", he continues.

Chk1 works by protecting against replicative stress, a kind of damage that occurs in cells' genetic material as they divide. Some tumours indeed suffer continuous lesions in their genome due to their high division rates.

"The presence of 'genome guardians' like Chk1 may favour the growth of this kind of tumour by lessening its lesion load", explains Loìpez-Contreras.

"This study sheds light on why Chk1 is overexpressed in many tumours, when we would intuitively suppose that what favours the development of cancer is the loss of protective genes," the scientist concludes.

Juan J. Gómez | EurekAlert!
Further information:
http://www.cnio.es

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>