Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CNIO researchers discover that a gene known to protect against cancer can also promote tumor growth

13.03.2012
The authors, from Oscar Fernandez Capetillo's group, have identified this double-edged property in the gene Chk1, an established tumor suppressor

Can a gene simultaneously protect against cancer and favor its growth? Researchers at the Spanish National Cancer Research Centre have discovered a gene with this double-edged property and suspect there may be many more that share it. In the words of Oscar Fernandez Capetillo, head of the group responsible for the study, this gene "can be both Dr. Jekyll and Mr. Hyde, in that it can either protect us against the appearance of tumors or promote tumor growth".

The study, appears this week in the Journal of Experimental Medicine, with Andreìs J. Loìpez-Contreras and Paula Gutieìrrez Martiìnez as first authors, focuses on the activity of Chk1, a gene known for its tumour suppressing effect. It is what Fernaìndez-Capetillo calls "a genome guardian, a gene that keeps our genome free of mutations and, therefore, protects against the development of tumours".

The team wished to ascertain whether the tumour-protective effect of Chk1 was magnified in organisms with a larger quantity of the protein it codes for, so they created a mouse with three copies of the gene instead of the normal two. They then extracted and cultured the animal's cells and turned them cancerous with the aid of other genes. What they observed confounded all expectations: the cells became malignant more easily when carrying an extra copy of Chk1.

The reason for this paradox is that Chk1 has a beneficial effect on healthy cells, but also benefits tumour cells once they have established themselves in the body.

The dual role of Chk1

"Initially, Chk1 prevents the appearance of tumours, by limiting the spontaneous mutations that take place in our cells", remarks Fernaìndez Capetillo. "This is the Dr. Jekyll side. However, advanced tumours exhibit extensive damage to their DNA and it is here that Chk1 comes to the tumour's aid by reducing the damage built up in its genome", he continues.

Chk1 works by protecting against replicative stress, a kind of damage that occurs in cells' genetic material as they divide. Some tumours indeed suffer continuous lesions in their genome due to their high division rates.

"The presence of 'genome guardians' like Chk1 may favour the growth of this kind of tumour by lessening its lesion load", explains Loìpez-Contreras.

"This study sheds light on why Chk1 is overexpressed in many tumours, when we would intuitively suppose that what favours the development of cancer is the loss of protective genes," the scientist concludes.

Juan J. Gómez | EurekAlert!
Further information:
http://www.cnio.es

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>