Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choosing a mate: It's the brain, not the nose, that knows

07.10.2016

How does a male moth find the right sort of female for mating, when there are two similar types luring him with their pheromones? In many species, differences in the antenna used by the male to smell these perfumes are responsible for his choice. But in the European Corn Borer, changes in the male's brain seem to dictate his choice between two types of available females, as shown by researchers from the University of Amsterdam, the Swedish University of Agricultural Sciences, and the Max Planck Institute for Chemical Ecology.

Female moths produce a sex pheromone, a different blend of chemicals for each species, which attracts males from a distance. Males detect these chemicals with exquisitely sensitive hair-like structures in the antenna. These hairs contain specialized neurons, nerve cells that express pheromone receptors which are activated when they bind to individual pheromone components.


A male and female moth of the European Corn Borer Ostrinia nubilalis: Understanding the pheromone communication in this insect may contribute to a better pest control.

Melanie Unbehend / Max Planck Institute for Chemical Ecology

Different species have different pheromone receptors, and so the ability to most accurately smell females of the same species prevents attraction to other females. Solving the puzzle of why a certain pheromone receptor is activated only by a specific chemical has motivated much past research.

"Our previous work in mapping the pheromone receptors of the European Corn Borer convinced us that this species doesn't fit the mold, and so we took another approach," says lead author Fotini Koutroumpa.

The European Corn Borer uses a simple pheromone with only two isomeric compounds, identical except for the orientation of a double bond. The two "pheromone strains" of this species produce them in different proportions. E-strain females make mostly the E isomer with traces of the Z isomer, which is highly attractive to E-strain males. Z-strain females release the opposite ratio, attracting Z-strain males.

In both cases, both components are absolutely necessary for attraction, and males of both strains can smell both, with similar or identical antennal structures and pheromone receptors. So what difference among the E and Z males could explain their opposite preferences? "We decided to look for a difference at the genetic level", says co-author Astrid Groot.

By crossing the E and Z strains in the laboratory and mapping the gene governing male preference, the researchers found that the pheromone receptors had little or no effect. Instead, a chromosomal region containing genes involved in neuronal development explained most of the male behavioral response. "This result fits with our previous work showing that E and Z males have different connections between the brain and the neurons containing pheromone receptors," explains co-author Teun Dekker.

This suggests that females of the E or Z strain smell the same to both E and Z males, while their preferences are controlled not by their noses but instead by their brains. "This result will point future research towards the tiny but complex moth brain, and shed light on how the diverse pheromone systems of the thousands of moth species has changed throughout evolution," concludes co-author David Heckel. [DGH]

Original Publication:
Koutroumpa, F. A., Groot, A. T., Dekker, T., Heckel, D. G. (2016). Genetic mapping of male pheromone response in the European Corn Borer identifies candidate genes regulating neurogenesis. Proceedings of the National Academy of Sciences of the United States of America (Early Edition), DOI: 10.1073/pnas.1610515113
http://dx.doi.org/10.1073/pnas.1610515113

Further Information:
David G. Heckel, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57 1500, heckel@ice.mpg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2016.html

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>