Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choosing a mate: It's the brain, not the nose, that knows

07.10.2016

How does a male moth find the right sort of female for mating, when there are two similar types luring him with their pheromones? In many species, differences in the antenna used by the male to smell these perfumes are responsible for his choice. But in the European Corn Borer, changes in the male's brain seem to dictate his choice between two types of available females, as shown by researchers from the University of Amsterdam, the Swedish University of Agricultural Sciences, and the Max Planck Institute for Chemical Ecology.

Female moths produce a sex pheromone, a different blend of chemicals for each species, which attracts males from a distance. Males detect these chemicals with exquisitely sensitive hair-like structures in the antenna. These hairs contain specialized neurons, nerve cells that express pheromone receptors which are activated when they bind to individual pheromone components.


A male and female moth of the European Corn Borer Ostrinia nubilalis: Understanding the pheromone communication in this insect may contribute to a better pest control.

Melanie Unbehend / Max Planck Institute for Chemical Ecology

Different species have different pheromone receptors, and so the ability to most accurately smell females of the same species prevents attraction to other females. Solving the puzzle of why a certain pheromone receptor is activated only by a specific chemical has motivated much past research.

"Our previous work in mapping the pheromone receptors of the European Corn Borer convinced us that this species doesn't fit the mold, and so we took another approach," says lead author Fotini Koutroumpa.

The European Corn Borer uses a simple pheromone with only two isomeric compounds, identical except for the orientation of a double bond. The two "pheromone strains" of this species produce them in different proportions. E-strain females make mostly the E isomer with traces of the Z isomer, which is highly attractive to E-strain males. Z-strain females release the opposite ratio, attracting Z-strain males.

In both cases, both components are absolutely necessary for attraction, and males of both strains can smell both, with similar or identical antennal structures and pheromone receptors. So what difference among the E and Z males could explain their opposite preferences? "We decided to look for a difference at the genetic level", says co-author Astrid Groot.

By crossing the E and Z strains in the laboratory and mapping the gene governing male preference, the researchers found that the pheromone receptors had little or no effect. Instead, a chromosomal region containing genes involved in neuronal development explained most of the male behavioral response. "This result fits with our previous work showing that E and Z males have different connections between the brain and the neurons containing pheromone receptors," explains co-author Teun Dekker.

This suggests that females of the E or Z strain smell the same to both E and Z males, while their preferences are controlled not by their noses but instead by their brains. "This result will point future research towards the tiny but complex moth brain, and shed light on how the diverse pheromone systems of the thousands of moth species has changed throughout evolution," concludes co-author David Heckel. [DGH]

Original Publication:
Koutroumpa, F. A., Groot, A. T., Dekker, T., Heckel, D. G. (2016). Genetic mapping of male pheromone response in the European Corn Borer identifies candidate genes regulating neurogenesis. Proceedings of the National Academy of Sciences of the United States of America (Early Edition), DOI: 10.1073/pnas.1610515113
http://dx.doi.org/10.1073/pnas.1610515113

Further Information:
David G. Heckel, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57 1500, heckel@ice.mpg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2016.html

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>