Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chimps like listening to music with a different beat, research finds

27.06.2014

Nonhuman primates preferred African, Indian tunes over strong beats typical of Western music

While preferring silence to music from the West, chimpanzees apparently like to listen to the different rhythms of music from Africa and India, according to new research published by the American Psychological Association.


Psychological research with chimpanzees like Tara, above, has found chimps prefer silence to Western music. New research published by the American Psychological Association reveals chimpanzees like listening to other types of world music, such as African and Indian.

Credit: Photo courtesy of the Yerkes National Primate Research Center, Emory University

"Our objective was not to find a preference for different cultures' music. We used cultural music from Africa, India and Japan to pinpoint specific acoustic properties," said study coauthor Frans de Waal, PhD, of Emory University. "Past research has focused only on Western music and has not addressed the very different acoustic features of non-Western music. While nonhuman primates have previously indicated a preference among music choices, they have consistently chosen silence over the types of music previously tested."

Previous research has found that some nonhuman primates prefer slower tempos, but the current findings may be the first to show that they display a preference for particular rhythmic patterns, according to the study. "Although Western music, such as pop, blues and classical, sound different to the casual listener, they all follow the same musical and acoustic patterns. Therefore, by testing only different Western music, previous research has essentially replicated itself," the authors wrote. The study was published in APA's Journal of Experimental Psychology: Animal Learning and Cognition.

... more about:
»African »Chimpanzees »Chimps »Indian »acoustic »primates

When African and Indian music was played near their large outdoor enclosures, the chimps spent significantly more time in areas where they could best hear the music. When Japanese music was played, they were more likely to be found in spots where it was more difficult or impossible to hear the music. The African and Indian music in the experiment had extreme ratios of strong to weak beats, whereas the Japanese music had regular strong beats, which is also typical of Western music.

"Chimpanzees may perceive the strong, predictable rhythmic patterns as threatening, as chimpanzee dominance displays commonly incorporate repeated rhythmic sounds such as stomping, clapping and banging objects," said de Waal.

Sixteen adult chimps in two groups participated in the experiment at the Yerkes National Primate Research Center at Emory University. Over 12 consecutive days for 40 minutes each morning, the groups were given the opportunity to listen to African, Indian or Japanese music playing on a portable stereo near their outdoor enclosure. Another portable stereo not playing any music was located at a different spot near the enclosure to rule out behavior that might be associated with an object rather than the music. The different types of music were at the same volume but played in random order. Each day, researchers observed the chimps and recorded their location every two minutes with handwritten notes. They also videotaped the activity in the enclosure. The chimps' behavior when the music was played was compared to their behavior with no music.

"Chimpanzees displaying a preference for music over silence is compelling evidence that our shared evolutionary histories may include favoring sounds outside of both humans' and chimpanzees' immediate survival cues," said lead author Morgan Mingle, BA, of Emory and Southwestern University in Austin. "Our study highlights the importance of sampling across the gamut of human music to potentially identify features that could have a shared evolutionary root."

###

Article: "Chimpanzees Prefer African and Indian Music Over Silence," Morgan E. Mingle, BA, Emory University and Southwestern University; Timothy M. Eppley, PhD, and Matthew W. Campbell, PhD, Emory University; Katie Hall, PhD, Emory University and University of St Andrews; Victoria Horner, PhD, and Frans B. M. de Waal, PhD, Emory University; Journal of Experimental Psychology: Animal Learning and Cognition, online June 23, 2014.

Full text of the article is available from the APA Public Affairs Office and at http://www.apa.org/pubs/journals/releases/xan-0000032.pdf

Contact:

Lisa Newbern at (404) 727-7709 or lisa.newbern@emory.edu or Morgan Mingle at morgan.mingle@gmail.com

The American Psychological Association, in Washington, D.C., is the largest scientific and professional organization representing psychology in the United States. APA's membership includes nearly 130,000 researchers, educators, clinicians, consultants and students. Through its divisions in 54 subfields of psychology and affiliations with 60 state, territorial and Canadian provincial associations, APA works to advance the creation, communication and application of psychological knowledge to benefit society and improve people's lives.

http://www.apa.org

Lisa Bowen | Eurek Alert!

Further reports about: African Chimpanzees Chimps Indian acoustic primates

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>