Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chimpanzee uses innovative foresighted methods to fool humans

Chimpanzee Santino achieved international fame in 2009 for his habit of gathering stones and manufacturing concrete projectiles to throw at zoo visitors.

A new study shows that Santino’s innovativeness when he plans his stone-throwing is greater than researchers have previously observed. He not only gathers stones and manufactures projectiles in advance; he also finds innovative ways of fooling the visitors. The study, which was carried out at Lund University, has been published in PLoS One.

The new study looked at the chimpanzee’s ability to carry out complex planning. The case study shows how humans’ closest relatives in the animal kingdom appear to be able to plan to deceive others, and that they can also plan their deception inventively. The behaviour of the chimpanzee Santino is of particular interest because it is done while the humans to be deceived are out of sight.

That means that the chimpanzee can plan without having immediate perceptual feedback of his goal – the visitors to the zoo – to aid in his planning.

The subject of the study is Santino the chimpanzee, who achieved international fame in 2009 for his habit of gathering stones and manufacturing concrete projectiles to throw at visitors from the safety of his enclosure at Furuvik Zoo north of Stockholm. His behaviour was reported as an example of spontaneous planning for a future event, in which his psychological state was visibly quite different from that of his subsequent aggressive displays. Previously, such cognitive abilities had been widely believed to be restricted to humans.

The new study sought to collect more detailed data on Santino’s projectile-throwing behaviour over the course of the 2010 zoo season.

In the new study, the chimpanzee continued and extended his previous behaviour of caching projectiles for later use in aggressive throwing displays. The new behaviour involved innovative use of concealments: both naturally occurring ones and ones he manufactured from hay. All were placed near the visitors’ area. This allowed Santino to throw his missiles before the crowd had time to back away.

The first hay concealment was made after the zoo guide had repeatedly backed visitors away when the chimpanzee made throwing attempts. All concealments were made when the visitors were out of sight, and the hidden projectiles were used when they returned. In order to make the hay concealments the chimpanzee had bring the hay from the inside enclosure.

Over the course of the season, the researchers observed that the use of concealments became the chimpanzees preferred strategy. Moreover, Santino combined two deception strategies consistently: hiding projectiles and inhibiting the displays of dominance that otherwise preceded his throws.

The new findings suggest that chimpanzees may be able to represent the future behaviour of others while those others are not present. It is also critical that the chimpanzee’s initial behaviour produced a future event, rather than merely preparing for one that had reliably occurred before. This in turn, suggest a flexible planning ability which, in humans, relies on creative re-combining of memories, mentally acted out in a ‘what if’ future scenario.

The authors of the study are Mathias Osvath, from the Department of Cognitive Science at Lund University, and Elin Karvonen, from the University’s Primate Research Station. The article is entitled ‘Spontaneous innovation for future deception in a male chimpanzee’ and has appeared in the journal PLoS One, published by the Public Library of Science.

The corresponding author, Mathias Osvath, can be reached on:
tel. mobile: +46 705 330674

IHelga Ekdahl Heun | idw
Further information:

Further reports about: Chimpanzee Cognitive Science aggressive displays

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>