Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists make beds with soft landings

19.08.2008
Researchers create stable, highly pure helical peptide arrays

Bedsprings aren't often found in biology. Now, chemists have succeeded in making a layer of tiny protein coils attached to a surface, much like miniature bedsprings in a frame. This thin film made of stable and very pure helices can help researchers develop molecular electronics or solar cells, or to divine the biology of proteins.

Physical chemists at the Department of Energy's Pacific Northwest National Laboratory pulled off this design trick using a "soft-landing" technique that disperses the tiny protein coils onto a waiting surface. The small proteins called peptides are of a variety that normally take the shape of a coiled spring or helix in gas phase. The method used by PNNL's Julia Laskin and Peng Wang delivered ultra-pure helical peptides to the surface and trapped them there, they report in July 29 and will appear in print in an upcoming issue of Angewandte Chemie.

"Controlling the conformation of peptides is not easy," said Laskin. "Our previous studies showed that soft-landing can be used to prepare ultrapure peptide layers on substrates. The question we faced was, in addition to controlling purity, can we also control the structure of the molecules? We showed we could."

Researchers have been trying to make thin films of helical peptides for many years. Because the peptides line up in an orderly fashion, the overall chemical nature of the thin films make them useful for a variety of technological applications. They can be modified with light sensitive molecules and turned into components of solar cells; or designed to change shape when a current is applied for molecular electronics. Also, the helices themselves can be used to elicit cues about how proteins function.

After making the thin films out of generic peptides previously, Laskin and Wang wanted to use this method to make a film out of helical peptides, and compare it with a more common method called electrospray.

To do so, Laskin and Wang began with peptides made almost entirely of the amino acid alanine. Due to alanine's chemical nature, long chains of it naturally form so-called á helices. The researchers ended the alanine chain with the amino acid lysine, which stabilizes the helix and allows the coiled chain to be chemically attached to the surface.

Working with a specially designed mass-selected ion deposition instrument at DOE's Environmental Molecular Sciences Laboratory on the PNNL campus, they deposited the peptides on the support layer in one of two ways, starting either from a liquid form for electrospray or from a gaseous mixture for soft-landing. In each case, the chemists began with the peptides (either in liquid or gas), zapped them to give them a slight electrical charge and blew them onto the surface.

When the chemists examined the peptide shapes in the solution and the resulting thin film, they found, unexpectedly, that most of the peptides failed to form helices. Instead, the majority of peptides took on a flat shape known as a â sheet. The dearth of helices in liquid form surprised the researchers.

When the researchers next used soft-landing to form thin layers, they didn't know if the peptides would form helices before landing on the surface. "Because we were starting from something that wasn't á-helical in solution, we were a little pessimistic whether it would work at all," Wang said.

But work it did. Depositing the peptides with soft-landing, the chemists found that nearly all of them alighted as helices. In addition, they could chemically connect the helices to the surface using a related technique called reactive-landing. When the chemists treated the thin layer with sound waves to test how easily the peptides fell off or changed shape, they found that some loosely bound peptides fell off, but those remaining maintained their helical forms.

"They formed a nicely organized, beautiful layer," says Wang.

Next, the team would like to create thin peptide layers using different support surfaces and a different mix of peptide shapes, to learn how to control the design of the thin films precisely.

"We found an interesting pathway to conduct different types of chemical reactions between complex molecules and substrates that will potentially enable us to prepare materials that cannot be made by standard methods," said Laskin.

"We hope to conduct lots of chemistry on the thin films," said Laskin -- chemistry that will let them spring forward into understanding biology and developing new materials.

Reference: P. Wang and J. Laskin, Helical Peptide Arrays on Self-Assembled Monolayer Surfaces through Soft and Reactive Landing of Mass-Selected Ions, Angewandte Chemie, online July 29, 2008, DOI 10.1002/anie.200801366 (http://dx.doi.org/10.1002/anie.200801366).

This work was supported by PNNL discretionary funding and DOE's Office of Basic Energy Sciences, part of the Office of Science.

The Environmental Molecular Sciences Laboratory is a national scientific user facility sponsored by the Department of Energy's Office of Science, Biological and Environmental Research program that is located at Pacific Northwest National Laboratory. EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. EMSL's technical experts and suite of custom and advanced instruments are unmatched. Its integrated computational and experimental capabilities enable researchers to realize fundamental scientific insights and create new technologies.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,000 staff, has a $855 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.

Mary Beckman | EurekAlert!
Further information:
http://www.pnl.gov
http://dx.doi.org/10.1002/anie.200801366

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>