Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When chemists invent new rattles

13.02.2014
Chemists supported by the Swiss National Science Foundation (SNSF) have developed a one-pot synthesis process to encapsulate nanoparticles. This type of particle could improve the antimicrobial coating of implants.

Western populations live longer while enjoying good health. More and more people, for example young pensioners, have implants fitted to pursue their activities. But such surgery is not without its risks: during an operation, bacteria can reach the surface of the implant.

Once they have colonised the surface and formed a biofilm, the implant has to be removed and the wound cleaned. No new implant can be fitted till the infection has cleared up completely. These complications affect 2% of artificial hip joints, 5-10% of artificial knee joints and reach 50% for cardiac shunt and stent operations.

One way of fighting the growth of bacteria on the surface of the implant is the addition of an antimicrobial coating. A research group, led by Katharina Fromm of the University of Fribourg, has developed such a coating. It is currently undergoing in-vivo tests in a project funded by the CTI. This coating continually emits an antimicrobial agent - silver ions - for the duration of approximately three months.

Coating with longer effect

To prolong the efficiency of the coating, the researchers are currently working on a second-generation coating in which the silver nanoparticle would be encapsulated in silica. This would enhance the stability of the nanoparticle by isolating it from its environment. It would also slow down the diffusion of the silver and prolong the efficiency of the coat-ing. Another advantage of this method is that cells can tolerate a much greater number of silver nanoparticles if they are encapsulated than if they are naked.

To this end, the researchers have developed, within the context of the National Research Programme “Smart Materials” (NRP 62), a one-pot synthesis process (*) to encapsulate the nanoparticles. This allows them to determine the porosity and the size of the silica container in relation to the nanoparticle it contains. Under the microscope, it looks like a nanoscopic rattle.

Targeted release

To improve the performance of the coating even further, the researchers - in collaboration with Prof Christian Bochet’s group - are also working on bacterial sensors which they aim to attach to the encapsulated nanoparticles. If such a sensor were in place, the silver would only be released if a pathogen were nearby. This targeted release would further prolong the efficiency of the protection and it would prevent silver from being needlessly released into the organism.

The synthesis developed by the researchers allows for the development of various types of containers for various nanoparticles. The application potential for these nano-rattles is therefore considerable: by con-trolling the porosity of the container, it is for example possible to con-trol which molecules can get close to the nanoparticles. This, in turn, would make it possible to create a nanoreactor in which a chemical reaction can take place. The technique might also enable new battery designs in which each encapsulated nanoparticle would play the role of an electrode.

National Research Programme “Smart Materials” (NRP 62)

NRP 62 is a cooperation programme between the Swiss National Sci-ence Foundation (SNSF) and the Innovation Promotion Agency (CTI). The programme's aim is not only to promote scientific excellence but also to promote the successful industrial exploitation of smart materi-als and their application. NRP 62 also strives to link up the available skills and resources of various research institutions in Switzerland. The research work provides the technologies required to develop smart materials and the structures needed to integrate these. Having started its second phase at the beginning of 2013, NRP 62 now consists of 12 projects whose funding has been continued thanks to their high potential for practical application. NRP 62 will come to an end in 2015.

www.nrp62.ch

(*) Magdalena Priebe et Katharina M. Fromm (2014). One-pot synthesis and catalytic properties of encapsulated nanoparticles in silica nanocontainers. Particle & Particle Systems Characterization online: doi:10.1002/ppsc.

(Journalists can order the article as a PDF from the SNSF: com@snf.ch)

Contact
Prof. Katharina M. Fromm
Chemistry department
University of Fribourg
Chemin du Musée 9
1700 Fribourg
Tel. : ++41 26 300 87 32
E-mail : katharina.fromm@unifr.ch

Media - Abteilung Kommunikation | idw
Further information:
http://www.nfp62.ch
http://www.snsf.ch

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>