Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists develop new "light switch" chloride binder

31.08.2010
Chemists at Indiana University Bloomington have designed a molecule that binds chloride ions -- but can be conveniently compelled to release the ions in the presence of ultraviolet light.

Reporting in the Journal of the American Chemical Society today (online), IU Bloomington chemist Amar Flood and Ph.D. student Yuran Hua explain how they designed the molecule, how it works and, just as importantly, how they know it works.

"One of the things we like most about this system is that the mechanism is predictable -- and it functions in the way we propose," said Flood, who led the project.

Chloride is a relatively common element on Earth, ubiquitous in seawater and in the bodies of living organisms.

"We have two main goals with this research," Flood said. "The first is to design an effective and flexible system for the removal of toxic, negatively charged ions from the environment or industrial waste. The second goal is to develop scientific and even medical applications. If a molecule similar to ours could be made water soluble and non-toxic, it could, say, benefit people with cystic fibrosis, who have a problem with chloride ions accumulating outside of certain cells."

Many organic molecules exist that can bind positively charged ions, or cations, and this has much to do with the fact that it is easy to synthesize organic molecules with negatively charged parts. Synthesizing organic molecules that bind negatively charged ions, or anions, like chloride, presents special challenges.

The binding molecule or "foldamer" Flood and Hua designed is both a folding molecule and a (small) polymer, meaning the foldamer's constituent parts can be synthesized with relative ease. Under visible light of 436 nanometers (nm), the foldamer prefers a tight spiral structure that allows specially configured residues to interact with each other, which improves stability, and creates an attractive pocket for chloride. In the presence of ultraviolet light (365 nm), the foldamer absorbs energy and the tight spiral is destabilized, weakening the chloride binding pocket and freeing chloride to re-enter the solution.

The "light switch" properties of the foldamer could make it an invaluable tool to biochemists and molecular biologists who seek to adjust the availability of chloride in their experiments by simply turning a UV light emitter on or off.

The foldamer is not quite ready for that, however. It can only be dissolved at present in organic (fatty) solutions, whereas living systems operate mostly in water-based solutions.

"That's the direction we're headed," Flood said. "It actually wouldn't be that difficult to modify the molecule so that it is water soluble. But first we need to make sure it does all the things we want it to do."

In their JACS paper, Flood said he and Hua wanted to bring sythentic chemistry together with modern diagnostic approaches to demonstrate the efficacy of their foldamer.

"A lot of the ideas in our paper have been floating around for some time," Flood said. "The idea of a foldamer that binds anions, the idea of a foldamer that you can isomerize with light, the idea of receptor that can bind anions ... But none of the prior work uses conductivity to show that the chloride concentrations actually go up and down as intended. What's new is that we've put all these things together. We think we have something here that allows us to raise our heads to the great research that's preceded us."

Flood and Hua used an electrical conductivity test to show that when voltage is applied to the solution containing chloride ions and the binding molecule, electricity flows more freely in the presence of UV light, when the binder is relaxed and chloride is disassociated from it. That was proof, Flood said, that the foldamer was working as intended.

"My training is in building molecular machines," Flood said. "I create machines that do what we want them to do -- and to show what's possible in chemical and biological laboratory science."

The binding molecule Flood and Hua describe is an improvement on a previous binder developed by Flood and then-postdoctoral fellow Yongjun Li that was also an oligomer of sorts but did not fold. This previous iteration of the chloride binder was closed and donut-shaped, using space restrictions and strategically placed atoms to yield a binding pocket with a special affinity for chloride.

Funding and support for this research were provided by the U.S. Department of Energy's Office of Science and the Camille Dreyfus Teacher-Scholar Award.

To speak with Flood, please contact David Bricker, University Communications, at 812-856-9035 or brickerd@indiana.edu

David Bricker | Newswise Science News
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>