Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists develop new "light switch" chloride binder

31.08.2010
Chemists at Indiana University Bloomington have designed a molecule that binds chloride ions -- but can be conveniently compelled to release the ions in the presence of ultraviolet light.

Reporting in the Journal of the American Chemical Society today (online), IU Bloomington chemist Amar Flood and Ph.D. student Yuran Hua explain how they designed the molecule, how it works and, just as importantly, how they know it works.

"One of the things we like most about this system is that the mechanism is predictable -- and it functions in the way we propose," said Flood, who led the project.

Chloride is a relatively common element on Earth, ubiquitous in seawater and in the bodies of living organisms.

"We have two main goals with this research," Flood said. "The first is to design an effective and flexible system for the removal of toxic, negatively charged ions from the environment or industrial waste. The second goal is to develop scientific and even medical applications. If a molecule similar to ours could be made water soluble and non-toxic, it could, say, benefit people with cystic fibrosis, who have a problem with chloride ions accumulating outside of certain cells."

Many organic molecules exist that can bind positively charged ions, or cations, and this has much to do with the fact that it is easy to synthesize organic molecules with negatively charged parts. Synthesizing organic molecules that bind negatively charged ions, or anions, like chloride, presents special challenges.

The binding molecule or "foldamer" Flood and Hua designed is both a folding molecule and a (small) polymer, meaning the foldamer's constituent parts can be synthesized with relative ease. Under visible light of 436 nanometers (nm), the foldamer prefers a tight spiral structure that allows specially configured residues to interact with each other, which improves stability, and creates an attractive pocket for chloride. In the presence of ultraviolet light (365 nm), the foldamer absorbs energy and the tight spiral is destabilized, weakening the chloride binding pocket and freeing chloride to re-enter the solution.

The "light switch" properties of the foldamer could make it an invaluable tool to biochemists and molecular biologists who seek to adjust the availability of chloride in their experiments by simply turning a UV light emitter on or off.

The foldamer is not quite ready for that, however. It can only be dissolved at present in organic (fatty) solutions, whereas living systems operate mostly in water-based solutions.

"That's the direction we're headed," Flood said. "It actually wouldn't be that difficult to modify the molecule so that it is water soluble. But first we need to make sure it does all the things we want it to do."

In their JACS paper, Flood said he and Hua wanted to bring sythentic chemistry together with modern diagnostic approaches to demonstrate the efficacy of their foldamer.

"A lot of the ideas in our paper have been floating around for some time," Flood said. "The idea of a foldamer that binds anions, the idea of a foldamer that you can isomerize with light, the idea of receptor that can bind anions ... But none of the prior work uses conductivity to show that the chloride concentrations actually go up and down as intended. What's new is that we've put all these things together. We think we have something here that allows us to raise our heads to the great research that's preceded us."

Flood and Hua used an electrical conductivity test to show that when voltage is applied to the solution containing chloride ions and the binding molecule, electricity flows more freely in the presence of UV light, when the binder is relaxed and chloride is disassociated from it. That was proof, Flood said, that the foldamer was working as intended.

"My training is in building molecular machines," Flood said. "I create machines that do what we want them to do -- and to show what's possible in chemical and biological laboratory science."

The binding molecule Flood and Hua describe is an improvement on a previous binder developed by Flood and then-postdoctoral fellow Yongjun Li that was also an oligomer of sorts but did not fold. This previous iteration of the chloride binder was closed and donut-shaped, using space restrictions and strategically placed atoms to yield a binding pocket with a special affinity for chloride.

Funding and support for this research were provided by the U.S. Department of Energy's Office of Science and the Camille Dreyfus Teacher-Scholar Award.

To speak with Flood, please contact David Bricker, University Communications, at 812-856-9035 or brickerd@indiana.edu

David Bricker | Newswise Science News
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

IVAM Marketing Prize recognizes convincing technology marketing for the tenth time

22.08.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>