Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical microdroplet computers are easier to teach than to design

15.10.2015

Scientists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw in cooperation with the Institute of Physics of the PAS and the University of Jena have developed the concept of a simple chemical computer made of microdroplets capable of searching databases.

Computer simulations, carried out on databases of malignant tumours, have confirmed the validity of the adopted new design strategy, which opens the door to the popularisation of chemical methods of processing information.


These are different spatio-temporal structures that appear in chemical systems can be used for information coding and processing.

Credit: IPC PAS, Grzegorz Krzyzewski

Under the appropriate conditions, oscillating chemical reactions can occur inside a droplet. If there is more than one droplet and they are in contact with each other, the resulting chemical waves are able to penetrate into neighbouring droplets and disperse throughout the whole complex. This phenomenon is well-known, and attempts are being made to use it, among other things, for chemical data processing. Propagation of information throught many droplet system depends on their geometrical arrangement. Up to now, not much was known about how to design the shape of the microdroplet complexes for them to execute specific tasks. So, at the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, Poland, a novel strategy has been proposed. Instead of laboriously designing complex systems of microdroplets for a particular purpose, it is better to first produce a system, and then try to teach it something useful.

"We adopted a strategy that nature uses with great efficiency. Let's just look at ourselves. After all, our brains don't evolve to, for instance, recognise letters! First the brain comes into existence, and only then does it learn to read and write. Why not approach complex microdroplet systems in a similar manner, since we know that they also process information? Our proposal is therefore as follows: first let's make a system of interacting chemically microdroplets, and then let's check what it can learn to do," says Prof. Jerzy Górecki (IPC PAS).

Research on the chemical processing of information by microdroplet systems, funded by the Polish Ministry of Science and Higher Education, the Foundation for Polish Science and the European Union, was carried out using the Belousov-Zhabotinsky oscillating reaction. When the conditions of this reaction are suitably selected, a chemical front wandering in space appears. Oscillation reactions are common in living organisms. In humans, at the stage of embryonic development, they form the beginnings of the spinal vertebrae; in adults they are responsible, among others, for the contractions of heart muscle.

"In the Belousov-Zhabotinsky reaction the passing of a chemical front is accompanied by changes in ion concentrations leading to a change in the colour of the solution. When the reaction occurs inside the droplet, clear pulses radiating in all directions can be seen within it under the microscope. The bigger the drop, the more often it pulsates," explains PhD student Konrad Gi?y?ski (IPC PAS).

Chemical pulses in complexes of adjoining droplets spread much like electrical stimulation in nerve fibres. Researchers from IPC PAS used pulse frequencies in individual drops to encode information: a high frequency corresponded to TRUE, a low frequency to FALSE. In order to control the pulses, and thus, among other things, to input data, the sensitivity of the reactions taking place in the droplets to blue light was used: in droplets illuminated by this the reactions die off completely.

Computer simulations were used to examine the calculating possibilities of a planar array of adjoining microdroplets arranged in a 5x5 square. Within the array droplets for inputting data and droplets for processing information were distinguished. Data was entered by simulating appropriately long exposure of the input droplets. Learning took place by the selective interruption of reactions taking place in the drops (in a real system the interruption would also be performed by light). Researchers took the droplet whose oscillations were the best match with the correct answer as the droplet giving the answer. The aim of the learning process was to select the light exposure time of all the droplets in the system in such a way as to obtain the highest number of correct answers for all the records in the database.

The simulated array of oscillating microdroplets classified tumours that were in the CANCER database. This database is composed of 699 records, of which 66% correspond to benign tumour cells. This means that on seeing the next entry if we randomly say "Don't worry, your tumour is not malignant" we have a 66% chance of giving the right answer.

"Our little chemical computer answered correctly in more than 90% of cases. This is a very good result and proves the effectiveness of the strategy we adopted. It is not completely unequivocal, but even the classic computer does not have to give the right response to cases outside the database. In any case, we humans also don't always make the right decisions," says Prof. Gorecki.

Microdroplet information processing systems can be built using microfluidic devices. These are usually small plates made of transparent plastic, in which a carrier liquid flows through a system of appropriately designed channels, carrying droplets of other liquids immiscible in the carrier. In such systems, it is relatively easy to produce drops of different sizes, substrate concentrations, or even substrates themselves.

"We are able, in a controlled and repeatable manner, to arrange the microdroplets in space, for example, enclosing many droplets of one liquid within a droplet of another liquid - and in such a way that the selected droplet always has the same neighbours. What is more, we also have techniques that allow us to influence the rate of chemical exchange through the membranes of the adjoining droplets," describes Prof. Piotr Garstecki (IPC PAS) and gives the example of an arrangement of nine microdroplets enclosed within another droplet, recently constructed at his laboratory.

Systems processing information chemically cannot replace consumer electronics - they are too slow. Their important advantages, however, include their capability of parallel processing of information, and the potential possibility of working in extreme environments, e.g. at significant pressures and/or high temperatures, which is where modern electronics fails. An interesting perspective is intelligent medicines, responding to many factors within the body and which are activated only under specific, strictly defined, circumstances. But chemical computers can offer even more: theoretically they could arise using the phenomenon of self-organization. This possibility lets us think about, among others, futuristic space probes, capable of independently building key components from materials available on other planets.

###

See chemical pulses dispersing in a system of adjoining microdroplets. After only a dozen-or-so pulses, the biggest droplet starts to dominate over the others at https://www.youtube.com/watch?v=I0sBISsZX-w. (Source: IPC PAS)

The Institute of Physical Chemistry of the Polish Academy of Sciences was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialise specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually.

Media Contact

Jerzy Górecki
jgorecki@ichf.edu.pl
48-223-433-420

http://www.ichf.edu.pl 

Jerzy Górecki | EurekAlert!

Further reports about: IPC PAS databases droplet phenomenon processing information tumour tumours

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>