Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changing flowering times protect tobacco plants against insect herbivory

22.01.2010
Messenger molecule in oral secretions of herbivorous insects changes flower opening time of their host plants: Hummingbirds take over role as pollinators from moths

Butterflies and moths are welcome visitors to many plant species. Plants attract insect pollinators with the colors, forms, nectars and scents of their flowers to ensure fertilization and reproduction.

However, female moths are also threatening to the plant: Once attracted by the flower's scent, they lay their eggs on the green leaves, and shortly voracious young caterpillars hatch. Scientists from the Max Planck Institute for Chemical Ecology have now discovered how tobacco plants successfully solve this dilemma.

The researchers found that herbivory changed the opening time of the flower buds from dusk to dawn. In addition the emission of flower scents was dramatically reduced. This change in flower timing was elicited by specific molecules in the oral secretions of the larvae, and required the jasmonate signaling cascade, which is known to elicit a host of other defense responses in plants. Instead of night-active moths, these morning-opening flowers attract day-active hummingbirds which are also able to transfer pollen - without threatening the plant's life. (Current Biology, online first, January 21, 2010)

Outbreak of tomato hornworms

During field experiments performed by PhD students of the Department of Molecular Ecology headed by Prof. Ian T. Baldwin in the Great Basin Desert of Utah (USA) in summer 2007, a massive outbreak of tomato hornworms (Manduca quinquemaculata) occurred. Almost every tobacco plant of the native species Nicotiana attenuata on the field site was attacked by these herbivores which prefer plants of the nightshade family. Danny Kessler intensively studied the infested plants and noticed that these plants had many flowers that opened after sunrise - although tobacco is typically a night-flowering plant and usually opens its flower buds after sunset. This finding resulted in experiments conducted in the following two years that showed that the flowering time postponed by 12 hours was directly related to herbivory.

Pollination wanted, but no oviposition

Ecologists had already noticed that female moths attracted for pollination laid their eggs, and shortly leaf-eating larvae hatched to feed on the same plant. The scientists considered whether plants would actually submit without reserve to this life-threatening disadvantage - just for pollination. They intensively studied the remarkable morning-opening flowers (MoF) which were only produced by plants that had been attacked by insect larvae and compared them to the usually occurring night-opening flowers (NoF). The first experiment already revealed an astounding result: MoF did not emit the attractant benzyl acetone anymore (see also Kessler et al., Science 321, 2008) and also the sugar concentration in the floral nectar was considerably reduced. Furthermore, it was striking that the petals of MoF only opened to a third of the size of NoF. All in all, the MoF were rendered literally unnoticeable by the moths - however, they may become interesting for different pollinators living nearby the field station: hummingbirds.

Hummingbirds visit the morning-opening flowers and serve as pollinators

To find out whether moths or birds successfully transferred pollen from flower to flower, the scientists determined the outcrossing rate of plants visited by moths or hummingbirds in field experiments. They removed the anthers from young flower buds to rule out self-pollination. Then an unattacked and an insect-attacked tobacco plant were covered with a mesh-covered wire cage until the morning of the next day to exclude night-active pollinators. A second pair of plants remained uncovered and thereby accessible to night-active pollinators. Before dawn the cages were exchanged, so that the plants that had been uncovered during the night were now covered and the plants that had been covered at night became accessible to pollinators during the day. In the evening all experimental plants were covered and the plants remained so until seed capsules were produced. Counting of the capsules revealed that a significant majority of capsules on plants that had not been attacked by caterpillars originated from flowers that were pollinated during the night between 8:00 p.m. and 6:00 a.m., whereas in caterpillar-infested plants successful pollination had occurred in majority during the day between 6:00 a.m. and 8:00 p.m., therefore by hummingbirds.

The scientists verified the assumption that actually hummingbirds visit the MoFs and drink their nectar by directly observing and counting out more than 1000 flowering wild tobacco plants. 18 humming bird visitations were intensively studied which showed hummingbirds visiting larvae-infested plants. As a matter of fact, more than 90% of the birds preferred the MoF compared to NoF, even if only a few MoF were on a plant. "It is likely that the hummingbirds can recognize the special shape of the partially open corollas of the MoF in the morning and associate these characteristics with the reliable quality and quantity of the nectar in these flowers," says Celia Diezel, co-author of the study.

Experiments using larval oral secretions and transgenic tobacco plants

In further experiments the scientists studied how attacked plants recognize herbivory and subsequently change the developmental program of the flowers to favor hummingbirds. Instead of infesting the plant by putting caterpillars on the leaves, the researchers mechanically wounded a leaf with a pattern wheel and applied oral secretions from hornworm larvae on the wounds. The plant reacted as after direct insect attack: After approximately 3 days more morning-opening flowers compared to non-induced plants were produced. "Maybe the fatty acid amino acid conjugates present in the oral secretions of the larvae elicit this reaction. We already know that they switch on the plant's defense against herbivory, for instance by producing toxic substances to fend off the attacker," Danny Kessler, PhD student at the institute, explains. In an additional experiment he used genetically modified tobacco, in which the signaling pathway between the messenger molecule in the oral secretion and the defense reaction was interrupted; these plants were unable to produce jasmonate, a plant hormone initiating plant defense responses. In fact, the transgenic jasmonate-deficient plants used in the field experiment did not produce MoF after spit induction, but could if the plants were sprayed with jasmonate, which showed that the reprogramming of the flower production is actually related to the pathway that switches on defense mechanisms.

Why do plants risk attracting tomato hornworm moths as pollinators, although the insects' larvae feed on the plants? "We cannot answer this question from the perspective of one single plant, but, if at all, from an evolutionary and ecological background," says Ian Baldwin. Wild tobacco populations grow on vast areas after fires, comparable to synchronized monocultures with thousands of widespread plants. Hummingbirds may not be the most reliable pollination service the plant species needs for outcrossing and reproduction. Using volatiles, the plants can attract moths from large distances, whereas hummingbirds are only available, if their nests are accidentally in the vicinity of the tobacco populations. Moreover, looking at the special mode of hummingbird pollination, it is more likely that flowers of one single plant are pollinated with pollen from the same plant than from flowers of different plants. This can decrease the genetic variability of the seeds produced. Moths may move more frequently among plants and this behavior may results in greater genetic variability for the seed produced from their pollination services. [JWK/AO]

Original Publication:
Danny Kessler; Celia Diezel; Ian T Baldwin: Changing pollinators as a means of escaping herbivores. Current Biology, Online First, January 21, 2010, DOI 10.1016/j.cub.2009.11.071
Further Information:
Ian T. Baldwin, Tel.: +49 (0)3641 57 1100, or +49 (0)175 180 4226 (mobile phone); baldwin@ice.mpg.de
Pictures:
Angela Overmeyer, MPI für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena, Tel.: 03641 57 2110, overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>