Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cellular surprise may help scientists better understand human mitochondrial diseases

07.09.2011
A surprising new discovery by the University of Colorado Boulder and the University of California, Davis regarding the division of tiny "power plants" within cells known as mitochondria has implications for better understanding a wide variety of human diseases and conditions due to mitochondrial defects.

Led by CU-Boulder Assistant Professor Gia Voeltz and her team in collaboration with the UC-Davis team led by Professor Jodi Nunnari, the researchers analyzed factors that regulate the behavior of mitochondria, sausage-shaped organelles within cells that contain their own DNA and provide cells with the energy to move and divide. The dynamics of mitochondrion were intimately tied to another cell organelle known as the endoplasmic reticulum, which is a complex network of sacs and tubules that makes proteins and fats.

Voeltz and her colleagues showed that the division of the mitochondria within cells is tied to the point or points where they are physically touching the endoplasmic reticulum in both yeast and mammalian cells. "This is the first time one cell organelle has been shown to shape another," said Voeltz of CU's molecular, cellular and developmental biology department.

A paper on the study was published in the Sept. 2 issue of the journal Science. Co-authors on the study included CU-Boulder graduate student Jonathan Friedman, researcher Matthew West and senior Jared DiBenedetto and UC-Davis postdoctoral researcher Laura Lackner.

Enclosed by membranes, mitochondria vary vastly in numbers per individual cells depending on the organism and tissue type, according to the researchers. While some single-cell organisms contain only a single mitochondrion, a human liver cell can contain up to 2,000 mitochondria and take up nearly one-quarter of the cell space.

Since numerous human diseases are associated with mitochondrial dysfunction, it is important to understand how the division process is regulated, said Voeltz.

Mitochondrial defects have been linked to a wide range of degenerative conditions and diseases, including diabetes, cardiovascular disease and stroke. "Our studies suggest the possibility that human mitochondrial diseases could result from disruption or excessive contact between the endoplasmic reticulum and the mitochondria."

Previous work, including research in Nunnari's lab at UC-Davis, has shown that mitochondrial division is regulated by a protein known as "dynamine-related protein-1" that assembles into a noose-like ligature that tightens around individual mitochondrion, causing it to divide. The team found that several additional proteins linked to mitochondrial division also were found where the endoplasmic reticulum and mitochondria touched.

"The new function for the endoplasmic reticulum expands and transforms our view of cell organization," said Nunnari, a professor and chair of molecular cell biology at UC-Davis. "It's a paradigm shift in cell biology."

The study was funded by the National Institutes of Health, the Searle Scholar Program and CU-Boulder. CU-Boulder's Undergraduate Research Opportunities Program and Bioscience Undergraduate Research Skills and Training program funded the research by DiBenedetto.

Gia Voeltz | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>