Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not All Cellular Reprogramming Is Created Equal

05.12.2011
FINDINGS: Tweaking the levels of factors used during the reprogramming of adult cells into induced pluriopotent stem (iPS) cells can greatly affect the quality of the resulting iPS cells, according to Whitehead Institute researchers. This finding explains at least in part the wide variation in quality and fidelity of iPS cells created through different reprogramming methods.

RELEVANCE: Like embryonic stem cells, iPS cells can become any cell type in the body, a characteristic that could make them well-suited for therapeutic cell transplantation or for creating cell lines to study such diseases as Parkinson’s and Alzheimer’s. Inconsistencies in iPS cell quality reported in a number of recent studies have tarnished their promise, dampened enthusiasm, and fueled speculation that they may never be used therapeutically.

Tweaking the levels of factors used during the reprogramming of adult cells into induced pluriopotent stem (iPS) cells greatly affects the quality of the resulting iPS cells, according to Whitehead Institute researchers.

“This conclusion is something that I think is very surprising or unexpected—that the levels of these reprogramming factors determine the quality of the iPS cells,” says Whitehead Founding Member Rudolf Jaenisch. “We never thought they’d make a difference, but they do.”

An article describing this work is published in the December 2 issue of Cell Stem Cell.

iPS cells are made by introducing specific reprogramming genes into adult cells. These factors push the cells into a pluripotent state similar to that of embryonic stem (ES) cells. Like ES cells, iPS cells can become any cell type in the body, a characteristic that could make them well-suited for therapeutic cell transplantation or for creating cell lines to study such diseases as Parkinson’s and Alzheimer’s.

Since the creation of the first iPS cells in 2006, researchers using various reprogramming techniques have reported a broad spectrum of efficiency rates and quality of resulting iPS cells. Although researchers have shown iPS cells can fulfill all developmental tests applied to ES cells, recent reports have identified molecular differences that can influence their developmental potential and render them less-than-equivalent partners to ES cells. These inconsistencies have tarnished the promise of iPS cells, dampened enthusiasm, and fueled speculation that they may never be used therapeutically.

In one example reported last year, a lab created iPS cells using a cutting-edge technique in which a piece of DNA containing four reprogramming genes is safely integrated in the genome of adult mouse cells. In this highly publicized study, the resulting iPS cells performed poorly in tests of pluripotency and failed to produce adult mice, which is the most stringent test of pluripotency. Yet again this called into question the fidelity by which reprogramming factors could consistently generate fully reprogrammed cells equivalent to ES cells. Many in the field saw this as another nail in the coffin of iPS cells.

To Bryce Carey, first author of the Cell Stem Cell paper and a graduate student in Jaenisch’s lab at the time, this death knell seemed premature. He repeated the experiment, changing a few details, including the order in which the reprogramming factors were placed on the inserted piece of DNA. Surprisingly, such small alterations had a profound effect—more adult cells were converted to high-quality iPS cells than in the earlier, nearly identical study.

“We are trying to show that the reprogramming process is not as flawed as some have thought, and that you can isolate these fully pluripotent iPS cells that have all of the developmental potential as embryonic stem cells at a pretty high frequency,” says Carey, who is now a postdoctoral associate at Rockefeller University. “A lot of times these parameters are very difficult to control, so while the approach first described by [Shinya] Yamanaka back in 2006 is still the most reliable method for research purposes, we should be cautious in concluding there are inherent limitations. We show recovery of high-quality cells doesn’t have to be the exception.”

This work was supported by the National Science Foundation (NSF) and the National Institutes of Health (NIH).

Written by Nicole Giese

* * *
Rudolf Jaenisch’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology.

* * *

Full Citation:

“Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells”

Cell Stem Cell, December 2, 2011

Bryce W. Carey (1,2), Styliani Markoulaki (1), Jacob Hanna (3,4), Dina A. Faddah (1,2), Yosef Buganim (1), Jongpil Kim (1), Kibibi Ganz (1), Eveline J. Steine (1), John P. Cassady (1,2), Menno P. Creyghton (1), G. Grant Welstead (1), Qing Gao (1), and Rudolf Jaenisch (1,2).

1. Whitehead Institute for Biomedical Research, Cambridge, MA 02142
2. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
3. Wiezmann Institute of Sciences, Rehovot, 76100, Israel
4. Department of Molecular Genetics, Rehovot, 76100, Israel

Nicole Giese | Newswise Science News
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>