Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular “Light Switch” Analysed Using Neutron Scattering

23.03.2016

The internal movements of proteins can be important for their functionality; researchers are discovering more and more examples of this. Now, with the aid of neutron spectroscopy, dynamic processes have also been detected in so-called “LOV photoreceptors” by scientists from Jülich, Aachen, Dusseldorf and Garching near Munich. These proteins are widely distributed throughout nature and are of biotechnological relevance. The results highlight the immense potential of neutron scattering experiments for the analysis of cellular processes. The research has recently been published in “Biophysical Journal” (DOI:10.1016/j.bpj.2016.01.021).

LOV proteins are very popular with molecular biologists; with their help, it is possible to turn biological processes on and off almost at the flick of a switch. When coupled with other proteins, it is possible to control these proteins with light, and to study the metabolic processes in the modified cells.


Superimposed stages of the movement of a LOV protein (foreground), generated by molecular dynamic simulation.

Forschungszentrum Jülich/M. Bocola, RWTH Aachen

The rather emotional-sounding name of this biological switch has a mundane origin; it is merely an acronym for light, oxygen and voltage – its full name being “flavin-binding light, oxygen, voltage photoreceptor”.

In nature, light-sensitive protein molecules stimulate biological processes, for example, the growth of plants towards light and the production of photosynthesis pigments in bacteria, when light falls on them. Their wide distribution in nature and their technological usefulness result partly from the fact that they function in a modular way: the switching function can be combined with many other processes.

The first experiments on LOV proteins using neutron scattering at the Heinz Maier-Leibnitz Zentrum in Garching have now shown the importance of the internal movements of these biomolecules for their functionality. The scientists analysed one such receptor from the soil bacterium Pseudomonas putida with a temporal resolution on the nano- and picosecond timescales.

“We found more intense movements in unexposed proteins than in those exposed to light”, explained Dr. Andreas Stadler of the Institute of Complex Systems and Jülich Centre for Neutron Science at Forschungszentrum Jülich.
“The exposed version is stiffer, especially in certain specific areas.”

In order to find out which areas of the protein are in motion, the researchers compared their neutron analyses with structural information already obtained from X-ray experiments with crystallized LOV proteins, and then simulated possible movements on a computer. This was necessary because neutrons are not able to register the movements of individual parts of protein molecules, but only the averaged movements of all proteins in the sample. For this reason, further experiments are always needed to ensure the correct interpretation of results. “If used appropriately, as in this case, neutrons can demonstrate their full capabilities and provide unique insights into the functions of biological processes,” enthused Stadler.

In the case of the LOV proteins analysed, it was already understood that two protein molecules would together form a functional unit. Their shape, in an active exposed state, looks a little like a rabbit’s head with pointed ears. In their non-active, non-exposed state, the “rabbit ears” hang downwards. The movements which the researchers have now discovered in the non-exposed proteins coincide exactly with the idea that this state is more flexible and mobile, whereas the upright “ears” are indeed stiffer and more rigid.

From earlier experiments, it was also already clear that the light-active centre was located in the “cheek” area of the protein’s “rabbit head”. On exposure to light, a chemical bond results between the light-active centre and a particular position on the protein backbone. The scientists now assume that the creation of this bond leads to structural alterations, which spread through the protein up to the “ears”, triggering their stiffening and simultaneous twisting. The “ears” presumably constitute the actual switch, which can activate or deactivate the interconnected proteins.

Neutrons offer numerous advantages over other methods in the analysis of proteins, and can provide significant complementary information. Proteins do not have to be dyed, crystallized, or altered in any way in order to perform experiments on them. Moreover, the process is very gentle on the samples, which can then be observed for longer time periods. Last but not least, light atoms in molecules such as hydrogen, for instance, can be detected more easily, even in the natural environment of proteins – aqueous solutions.

Original publication:
Photoactivation reduces side-chain dynamics of a LOV photoreceptor;
A. Stadler et al.;
Biophysical Journal, Volume 10, March 2016, 1061-1074, DOI: 10.1016/j.bpj.2016.01.021

Image: Superimposed stages of the movement of a LOV protein (foreground), generated by molecular dynamic simulation. The red areas show the initial position; the blue indicates the final position. A functional unit is made up of two LOV domains - the second can be seen in the background as the semi-transparent image. The light-absorbing centres of the protein are depicted in both subunits as ball-and-stick models.
Copyright: Forschungszentrum Jülich/M. Bocola, RWTH Aachen

Contact:
Dr. Andreas Stadler, Forschungszentrum Jülich, Jülich Centre for Neutron Science – Neutron Scattering (ICS-1/JCNS-1), Tel. +49 2461 61-4502, Email: a.stadler@fz-juelich.de

Press contact:
Angela Wenzik, Science Journalist, Forschungszentrum Jülich,
Tel. +49 2461 61-6048, Email: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/portal/EN/ - Forschungszentrum Jülich
http://www.fz-juelich.de/ics/EN/ - Institute of Complex Systems
http://www.fz-juelich.de/jcns/EN/ - Jülich Centre for Neutron Science
http://www.iet.uni-duesseldorf.de/en.html - Institute of Molecular Enzymtechnology
http:///www.biotec.rwth-aachen.de/index.php?page=home - Institute of Biotechnology, RWTH Aachen
http://mlz-garching.de/englisch - Heinz Maier-Leibnitz Zentrum

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

More articles from Life Sciences:

nachricht The large-scale stability of chromosomes
29.06.2016 | International School of Advanced Studies (SISSA)

nachricht Gene Drive Technology: Where is the future?
29.06.2016 | American Institute of Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

The large-scale stability of chromosomes

29.06.2016 | Life Sciences

Gene Drive Technology: Where is the future?

29.06.2016 | Life Sciences

Optical lenses, hardly larger than a human hair

29.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>