Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cellular Gates for Sodium and Calcium Controlled by Common Element of Ancient Origins


Find likely to aid drug development

  • Sodium channels and calcium channels are molecular portals that allow controlled passage of ions across a cell’s membrane; they are required for healthy brain, heart and muscle function.
  • While these two types of portals are distinct molecular beasts, Johns Hopkins researchers have discovered a long-unrecognized control feature common to both, a finding that promises new and unified approaches to related disease therapies.

All in the family: Sodium channels and calcium channels share common roots.

Manu Ben-Johny/Johns Hopkins Medicine

Researchers at Johns Hopkins have spotted a strong family trait in two distant relatives: The channels that permit entry of sodium and calcium ions into cells turn out to share similar means for regulating ion intake, they say. Both types of channels are critical to life. Having the right concentrations of sodium and calcium ions in cells enables healthy brain communication, heart contraction and many other processes. The new evidence is likely to aid development of drugs for channel-linked diseases ranging from epilepsy to heart ailments to muscle weakness.

“This discovery was long in coming,” says David Yue, M.D., Ph.D., a professor in the Johns Hopkins University School of Medicine’s Department of Biomedical Engineering. His team’s report, which appears in the June 19 issue of the journal Cell, had its genesis in the 1990s with another group’s observation that sodium and calcium channels bear a striking resemblance in a small portion of an otherwise very different structure. “It looked like this ‘resemblance element’ might be a molecular time capsule derived from a primeval ion channel thought to have birthed distinct sodium and calcium channels a billion years ago,” Yue says.

... more about:
»Cellular »calmodulin »concentrations »drugs »ions »sodium

For calcium channels, Yue’s and other research groups found that the resemblance element supports an important function, preventing the channel from opening when the cellular calcium level gets high. This prevents too much calcium from building up within cells, much like a thermostat controls household temperatures. This calcium control requires a calcium-sensing molecule called calmodulin, which binds to channels within the resemblance element.

The picture for sodium channels, however, was muddier, with different researchers reporting conflicting findings about whether calmodulin and the resemblance element prevent the opening of sodium channels; perhaps the time capsule was damaged over the millenia or was never there.

Manu Ben-Johny, a graduate student in Yue’s laboratory, took up the question. “We thought that the conflicting results for sodium channels might be related to difficulties in existing methods to control the calcium concentrations that might affect these channels,” Ben-Johny says.

Looking for a new way to approach the problem, Yue’s team bound calcium ions in molecular “cages” that could be opened with a flash of light. This enabled them to “smuggle” calcium ions into cells and see what happened to sodium channels when the calcium concentration changed abruptly. They found that, as with calcium channels, increasing calcium concentrations caused calmodulin to bind within the resemblance element of sodium channels and prevent their opening, just as in calcium channels.

The implications of a common control element in sodium and calcium channels are vast, Yue says, including unified understanding of conditions that spring from defects in the calcium control of these channels. In addition, he says, “Researchers have long sought drugs that modulate sodium and calcium channels in new ways. Targeting the common control element offers a new frontier for developing next-generation pharmaceuticals.”

Other authors on the paper are Philemon S. Yang, Jacqueline Niu, Wanjun Yang and Rosy Joshi-Mukherjee, all of The Johns Hopkins University.

This study was funded by the National Institute of Neurological Disorders and Stroke (grant number R01 NS073874) and the National Institute of Mental Health (grant number F31MH088109).

Shawna Williams | Eurek Alert!
Further information:

Further reports about: Cellular calmodulin concentrations drugs ions sodium

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>