Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When cells run out of fuel

25.08.2009
Parkinson's genes ensure the energy supply of neurons

Parkinson's disease is caused by the degeneration of neurons in the midbrain. The mechanisms leading to the loss of these neurons, however, are largely unknown. Recent research revealed that about ten per cent of cases are caused by defects in so-called Parkinson-associated genes.

Furthermore, mitochondria, the cellular powerhouses, seem to play a major role. New results from researchers at the LMU Munich under the lead of associate professor Dr. Konstanze Winklhofer and Professor Christian Haass connect both phenomena, showing that two Parkinson genes maintain the function of mitochondria. "Diseases like Parkinson's where at least some cases are unambiguously related to the dysfunction of specific genes offer a promising research opportunity," explains biochemist Dr. Konstanze Winklhofer "When we understand the function of these genes, we can learn a lot about the causes of the disease, its progress and possible new therapies." Professor Wolfgang Wurst and his group of the Institute for Developmental Genetics at the Helmholtz Center Munich also contributed to this work. (Journal of Biological Chemistry, 21 August, 2009)

Four million individuals are estimated to suffer from Parkinson's disease worldwide. This neurodegenerative disorder is characterized by rigid muscles, uncontrollable tremor and slowing – or even loss of – voluntary movements. It is caused by the death of nerve cells in a midbrain area called substantia nigra. These neurons secrete dopamine, a neurotransmitter involved in the control of movements. Thus, a loss of dopamine-producing neurons causes a dysbalance in the regulation of movements.

"Functionally impaired mitochondria have been recognized to trigger Parkinson's disease already in the early eighties," Dr. Konstanze Winklhofer says, an associate professor at the Adolf-Butenandt Institute of the Ludwig-Maximilians-Universität (LMU) in Munich. At this time it was discovered by accident that mitochondrial toxins can induce Parkinson's disease. The relevance of mitochondria to the loss of neurons seems plausible – after all, mitochondria supply the cells with energy in form of adenosine triphosphate and play a substantial role in the regulation of cell death.

The scientists' results now combine both observations on a genetic basis. They found that the Parkinson-associated genes PINK1 and Parkin functionally interact to maintain mitochondrial function. Loss of Parkin or PINK1 function impairs the morphology and activity of mitochondria, which then produce less adenosine triphosphate. "Our results also confirm the high neuroprotective potential of Parkin", Winklhofer says. "We observed that Parkin can compensate a loss of PINK1 function, but not the other way round". Winklhofer and her colleagues have shown earlier that Parkin can protect neurons under various stress conditions.

Until today, there is no possibility to prevent or cure Parkinson's disease. All pharmacological approaches are merely symptomatic and aim at replacing the neurotransmitter dopamine. Insight into the function of Parkinson-associated genes can help to identify new targets for therapeutic strategies in order to prevent or halt the loss of dopamine-producing neurons. So far, six Parkinson-associated genes are known whose functions remain to be elucidated in detail. In the case of Parkin and PINK1 scientists have made significant steps forward and now aim at uncovering the molecular mechanisms of their functions.

Publication: "Loss of parkin or PINK1 function increases DRP1-independent mitochondrial fragmentation"
Lutz, A.K., Exner, N., Fett, M.E., Schlehe, J.S., Kloos, K., Laemmermann, K., Brunner, B., Kurz-Drechsler, A., Vogel, F., Reichert, A.S., Bouman, L., Vogt-Weisenhorn, D., Wurst, W., Tatzelt, J., Haass, C., and Winkelhofer, K.F.

Journal of Biological Chemistry, 21. August 2009. Vol. 284, Issue 34, 22938-22951

Contact:
Priv.-Doz. Dr. Konstanze F. Winklhofer, M.D., Ph.D.
Adolf-Butenandt-Institute of Physiological Chemistry, Molecular Biology and Metabolic Biochemistry
Tel.: +49 (0) 89 / 2180 - 75483
Fax: +49 (0) 89 / 2180 - 75415
E-Mail: konstanze.winklhofer@med.uni-muenchen.de

Dr. Konstanze F. Winklhofer | EurekAlert!
Further information:
http://www.uni-muenchen.de
http://www.biochemie.abi.med.uni-muenchen.de/research/nbc/index.html

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>