Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When cells run out of fuel

25.08.2009
Parkinson's genes ensure the energy supply of neurons

Parkinson's disease is caused by the degeneration of neurons in the midbrain. The mechanisms leading to the loss of these neurons, however, are largely unknown. Recent research revealed that about ten per cent of cases are caused by defects in so-called Parkinson-associated genes.

Furthermore, mitochondria, the cellular powerhouses, seem to play a major role. New results from researchers at the LMU Munich under the lead of associate professor Dr. Konstanze Winklhofer and Professor Christian Haass connect both phenomena, showing that two Parkinson genes maintain the function of mitochondria. "Diseases like Parkinson's where at least some cases are unambiguously related to the dysfunction of specific genes offer a promising research opportunity," explains biochemist Dr. Konstanze Winklhofer "When we understand the function of these genes, we can learn a lot about the causes of the disease, its progress and possible new therapies." Professor Wolfgang Wurst and his group of the Institute for Developmental Genetics at the Helmholtz Center Munich also contributed to this work. (Journal of Biological Chemistry, 21 August, 2009)

Four million individuals are estimated to suffer from Parkinson's disease worldwide. This neurodegenerative disorder is characterized by rigid muscles, uncontrollable tremor and slowing – or even loss of – voluntary movements. It is caused by the death of nerve cells in a midbrain area called substantia nigra. These neurons secrete dopamine, a neurotransmitter involved in the control of movements. Thus, a loss of dopamine-producing neurons causes a dysbalance in the regulation of movements.

"Functionally impaired mitochondria have been recognized to trigger Parkinson's disease already in the early eighties," Dr. Konstanze Winklhofer says, an associate professor at the Adolf-Butenandt Institute of the Ludwig-Maximilians-Universität (LMU) in Munich. At this time it was discovered by accident that mitochondrial toxins can induce Parkinson's disease. The relevance of mitochondria to the loss of neurons seems plausible – after all, mitochondria supply the cells with energy in form of adenosine triphosphate and play a substantial role in the regulation of cell death.

The scientists' results now combine both observations on a genetic basis. They found that the Parkinson-associated genes PINK1 and Parkin functionally interact to maintain mitochondrial function. Loss of Parkin or PINK1 function impairs the morphology and activity of mitochondria, which then produce less adenosine triphosphate. "Our results also confirm the high neuroprotective potential of Parkin", Winklhofer says. "We observed that Parkin can compensate a loss of PINK1 function, but not the other way round". Winklhofer and her colleagues have shown earlier that Parkin can protect neurons under various stress conditions.

Until today, there is no possibility to prevent or cure Parkinson's disease. All pharmacological approaches are merely symptomatic and aim at replacing the neurotransmitter dopamine. Insight into the function of Parkinson-associated genes can help to identify new targets for therapeutic strategies in order to prevent or halt the loss of dopamine-producing neurons. So far, six Parkinson-associated genes are known whose functions remain to be elucidated in detail. In the case of Parkin and PINK1 scientists have made significant steps forward and now aim at uncovering the molecular mechanisms of their functions.

Publication: "Loss of parkin or PINK1 function increases DRP1-independent mitochondrial fragmentation"
Lutz, A.K., Exner, N., Fett, M.E., Schlehe, J.S., Kloos, K., Laemmermann, K., Brunner, B., Kurz-Drechsler, A., Vogel, F., Reichert, A.S., Bouman, L., Vogt-Weisenhorn, D., Wurst, W., Tatzelt, J., Haass, C., and Winkelhofer, K.F.

Journal of Biological Chemistry, 21. August 2009. Vol. 284, Issue 34, 22938-22951

Contact:
Priv.-Doz. Dr. Konstanze F. Winklhofer, M.D., Ph.D.
Adolf-Butenandt-Institute of Physiological Chemistry, Molecular Biology and Metabolic Biochemistry
Tel.: +49 (0) 89 / 2180 - 75483
Fax: +49 (0) 89 / 2180 - 75415
E-Mail: konstanze.winklhofer@med.uni-muenchen.de

Dr. Konstanze F. Winklhofer | EurekAlert!
Further information:
http://www.uni-muenchen.de
http://www.biochemie.abi.med.uni-muenchen.de/research/nbc/index.html

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>