Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When cells run out of fuel

25.08.2009
Parkinson's genes ensure the energy supply of neurons

Parkinson's disease is caused by the degeneration of neurons in the midbrain. The mechanisms leading to the loss of these neurons, however, are largely unknown. Recent research revealed that about ten per cent of cases are caused by defects in so-called Parkinson-associated genes.

Furthermore, mitochondria, the cellular powerhouses, seem to play a major role. New results from researchers at the LMU Munich under the lead of associate professor Dr. Konstanze Winklhofer and Professor Christian Haass connect both phenomena, showing that two Parkinson genes maintain the function of mitochondria. "Diseases like Parkinson's where at least some cases are unambiguously related to the dysfunction of specific genes offer a promising research opportunity," explains biochemist Dr. Konstanze Winklhofer "When we understand the function of these genes, we can learn a lot about the causes of the disease, its progress and possible new therapies." Professor Wolfgang Wurst and his group of the Institute for Developmental Genetics at the Helmholtz Center Munich also contributed to this work. (Journal of Biological Chemistry, 21 August, 2009)

Four million individuals are estimated to suffer from Parkinson's disease worldwide. This neurodegenerative disorder is characterized by rigid muscles, uncontrollable tremor and slowing – or even loss of – voluntary movements. It is caused by the death of nerve cells in a midbrain area called substantia nigra. These neurons secrete dopamine, a neurotransmitter involved in the control of movements. Thus, a loss of dopamine-producing neurons causes a dysbalance in the regulation of movements.

"Functionally impaired mitochondria have been recognized to trigger Parkinson's disease already in the early eighties," Dr. Konstanze Winklhofer says, an associate professor at the Adolf-Butenandt Institute of the Ludwig-Maximilians-Universität (LMU) in Munich. At this time it was discovered by accident that mitochondrial toxins can induce Parkinson's disease. The relevance of mitochondria to the loss of neurons seems plausible – after all, mitochondria supply the cells with energy in form of adenosine triphosphate and play a substantial role in the regulation of cell death.

The scientists' results now combine both observations on a genetic basis. They found that the Parkinson-associated genes PINK1 and Parkin functionally interact to maintain mitochondrial function. Loss of Parkin or PINK1 function impairs the morphology and activity of mitochondria, which then produce less adenosine triphosphate. "Our results also confirm the high neuroprotective potential of Parkin", Winklhofer says. "We observed that Parkin can compensate a loss of PINK1 function, but not the other way round". Winklhofer and her colleagues have shown earlier that Parkin can protect neurons under various stress conditions.

Until today, there is no possibility to prevent or cure Parkinson's disease. All pharmacological approaches are merely symptomatic and aim at replacing the neurotransmitter dopamine. Insight into the function of Parkinson-associated genes can help to identify new targets for therapeutic strategies in order to prevent or halt the loss of dopamine-producing neurons. So far, six Parkinson-associated genes are known whose functions remain to be elucidated in detail. In the case of Parkin and PINK1 scientists have made significant steps forward and now aim at uncovering the molecular mechanisms of their functions.

Publication: "Loss of parkin or PINK1 function increases DRP1-independent mitochondrial fragmentation"
Lutz, A.K., Exner, N., Fett, M.E., Schlehe, J.S., Kloos, K., Laemmermann, K., Brunner, B., Kurz-Drechsler, A., Vogel, F., Reichert, A.S., Bouman, L., Vogt-Weisenhorn, D., Wurst, W., Tatzelt, J., Haass, C., and Winkelhofer, K.F.

Journal of Biological Chemistry, 21. August 2009. Vol. 284, Issue 34, 22938-22951

Contact:
Priv.-Doz. Dr. Konstanze F. Winklhofer, M.D., Ph.D.
Adolf-Butenandt-Institute of Physiological Chemistry, Molecular Biology and Metabolic Biochemistry
Tel.: +49 (0) 89 / 2180 - 75483
Fax: +49 (0) 89 / 2180 - 75415
E-Mail: konstanze.winklhofer@med.uni-muenchen.de

Dr. Konstanze F. Winklhofer | EurekAlert!
Further information:
http://www.uni-muenchen.de
http://www.biochemie.abi.med.uni-muenchen.de/research/nbc/index.html

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>