Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cells brace themselves for starvation

23.02.2012
Sugar, cholesterol, phosphates, zinc – a healthy body is amazingly good at keeping such vital nutrients at appropriate levels within its cells.

From an engineering point of view, one all-purpose model of pump on the surface of a cell should suffice to keep these levels constant: When the concentration of a nutrient, say, sugar, drops inside the cell, the pump mechanism could simply go into higher gear until the sugar levels are back to normal.

Yet strangely enough, such cells let in their nutrients using two types of pump: One is active in "good times," when a particular nutrient is abundant in the cell's environment; the other is a "bad-times" pump that springs into action only when the nutrient becomes scarce. Why does the cell need this dual mechanism?

A new Weizmann Institute study, reported in Science, might provide the answer. The research was conducted in the lab of Prof. Naama Barkai of the Molecular Genetics Department by postdoctoral fellow Dr. Sagi Levy and graduate student Moshe Kafri with lab technician Miri Carmi.

It had been known for a while that when the levels of phosphate or zinc drop in the surroundings of a yeast cell, the number of "bad-times" pumps on the cell surface soars up to a hundred-fold. When phosphate or zinc becomes abundant again, the "bad-times" pumps withdraw while the "good-times" pumps return to the cell surface in large numbers.

In their new study, the scientists discovered that cells which repress their "bad-times" pumps when a nutrient is abundant were much more efficient at preparing for starvation and at recovering afterwards than the cells that had been genetically engineered to avoid this repression. The conclusion: The "good-times" pumps apparently serve as a signaling mechanism that warns the yeast cell of approaching starvation. Such advance warning gives the cell more time to store up on the scarce nutrient; the thorough preparation also helps the cell to start growing faster once starvation is over.

Thus, the dual-pump system appears to be part of a regulatory mechanism that allows the cell to deal effectively with fluctuations in nutrient supply. This clever mechanism offers the cell survival advantages that could not be provided by just one type of pump.

If these findings prove to be applicable to human cells, they could explain how our bodies maintain adequate levels of various nutrients in tissues and organs. Understanding the dual-pump regulation could be crucial because it might be defective in various metabolic disorders.

Prof. Naama Barkai's research is supported by the Helen and Martin Kimmel Award for Innovative Investigation; the Jeanne and Joseph Nissim Foundation for Life Sciences Research; the Carolito Stiftung; Lorna Greenberg Scherzer, Canada; the estate of John Hunter; the Minna James Heineman Stiftung; the European Research Council; and the estate of Hilda Jacoby-Schaerf. Prof. Barkai is the incumbent of the Lorna Greenberg Scherzer Professorial Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>