Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell membranes: Synthetics save time and cut costs

04.07.2013
An approach that directly inserts proteins into polymer-based cell membranes improves drug-screening platforms

Screening for critical drug targets known as G-protein-coupled receptors (GPCRs) is now possible without the need to extract these proteins from their native cells. Extraction requires the use of stabilizing lipids, which damage the structural integrity and functionality of GPCRs. The cell-free approach was developed by Madhavan Nallani from the A*STAR Institute of Materials Research and Engineering, Singapore, along with co-workers in Singapore, Germany and Austria.

Nallani and co-workers focused on GPCRs because they are ideal drug targets that pass through cell membranes. These proteins are involved in cell communication, cell adhesion and signal transduction, as well as major illnesses, including hypertension and diabetes.

The team’s approach produced GPCRs directly in artificial cell-like pockets called polymersomes. “This [approach] circumvents the tedious protein isolation process and the use of lipids or detergents as stabilizing agents,” says Nallani.

As a proof of concept, the researchers synthesized the GPCR dopamine receptor D2 in vitro in the presence of polymersomes and the DNA that encodes for the protein. “This cell-free expression provides an easy way to produce proteins directly from their DNA,” notes Nallani. The proteins generated by transcription and translation became incorporated into the polymer-based membranes via spontaneous self-assembly.

Characterization using fluorescently labeled antibodies that are receptor-specific showed that the self-assembled product displayed stronger fluorescence than the unmodified polymersomes, confirming the insertion of the receptor. This characterization also indicated that the membrane-incorporated portion of the receptor was properly oriented in the polymersomes.

Nallani’s team further investigated the structure of the polymersome-inserted receptor using a fluorescently tagged dopamine. “Dopamine will bind only if the receptor is correctly folded and oriented,” explains Nallani. After incubation, the GPCR-modified polymersomes showed higher fluorescence than the negative controls, indicating that the receptor maintained its structural integrity upon insertion into the polymersome.

The researchers assessed the potential use of the GPCR-modified polymersomes for drug screening and biosensing by synthesizing the receptor in the presence of polymersomes, which they patterned onto glass surfaces. Incubation of the resulting material with fluorescently labeled dopamine illuminated the patterns — proof of a successful GPCR addition. Exposure of these fluorescent patterns to increasing concentrations of unlabeled dopamine caused the fluorescence to decrease, showing that dopamine displaced the fluorescent ligand.

“We are developing this technology through a commercialization project from the A*STAR Exploit Technologies Pte Ltd and focusing on small-molecule and antibody screening,” says Nallani. His team is planning to form a start-up company with this approach within the next few months.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

May, S., Andreasson-Ochsner, M., Fu, Z., Low, Y. X., Tan, D. et al. In vitro expressed GPCR inserted in polymersome membranes for ligand-binding studies. Angewandte Chemie International Edition 52, 749–753 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6699
http://www.researchsea.com

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>