Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell discovery strengthens quest for cancer treatments

14.02.2012
Fresh insights into how our cells multiply could help scientists develop drugs to treat cancer.

Researchers have gained better understanding of the workings of two key proteins that control cell division. This process must be carried out accurately to keep cells healthy, and when it goes out of control, it can lead to cancer.

The study, led by the University of Edinburgh, could contribute to the development of new drugs that stop cancerous cells multiplying and so prevent the spread of the disease.

Such treatments – known as anti-mitotic drugs – would have the potential to limit the side-effects associated with some chemotherapy drugs, such as damage to healthy nerve cells. The development could also help optimise personalised chemotherapy treatments for individual cancer patients.

Scientists carried out a series of experiments to study how various proteins involved in the control of cell division interact with each other in cells. They used high-resolution microscopy to view the cells in 3D and determine the position of each of the proteins. Crucially, they were able to pinpoint how one key protein binds and triggers the activation of a further two key enzymes, each of which is involved with ensuring that cell division takes place correctly.

Both enzymes studied had previously been identified as targets for development of anti-cancer drugs. The latest discovery adds to scientists' understanding of how better drugs might be designed that stop the activity of both enzymes. The study, published in the Public Library of Science Biology, was supported by the Wellcome Trust.

Dr Mar Carmena of the University of Edinburgh's School of Biological Sciences, who took part in the study, said: "Cell division is a complex and tightly regulated process, and when it goes out of control this can lead to cancer. The greater our understanding of the proteins that control cell division, the better equipped scientists will be to design more effective treatments against cancer."

Catriona Kelly | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>