Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell discovery opens new chapter in drug development

10.09.2009
British scientists have uncovered new details about how the cells in our bodies communicate with each other and their environment: findings that are of fundamental importance to human biology.

Cells 'talk' to each other through a complex process called 'signalling'. When these signals go wrong, it can lead to all kinds of diseases, including cancer, diabetes and arthritis, to name but a few.

Scientists have long been able to see how cells send and receive signals at their outer skins, or membranes, but much of what happens afterwards has not been fully understood. As a result, many drugs on the market work without scientists knowing precisely how or what consequences they have for cell function.

Researchers at The University of Manchester in England have now developed a technique that will allow scientists to understand how these signals pass from the cell membrane into the cell itself, triggering a complex set of biological processes that have never been fully understood.

The research, published in the prestigious journal Science Signaling, will spark intense interest among the global scientific community, as they will hopefully lead to better drug design and faster drug delivery times. In addition, the findings will also provide biologists with a completely new insight into how our bodies work.

"Cell signalling is a fundamental biological process that is essential for life and when it goes wrong, disease results," said Professor Martin Humphries, lead researcher on the project and Dean of Manchester's Faculty of Life Sciences.

"Signals allow cells to 'taste' their environment in a similar fashion to how we taste food and drink. As an analogy, red wines have subtly different flavours, comprising a combination of hints of berries, oak, tobacco and liquorice. The same is true for cells that taste the thousands of molecules that make up their immediate environment.

"Our findings explain how cells might interpret these various flavours at a molecular level to generate an overall signal or taste. To do this, we have developed a technique that will allow scientists to examine how the receptors on the surface of cells pass information to the hundreds of proteins inside the cell that create the signal. Uniquely, our findings will allow scientists to look at all these hundreds of components at the same time."

The team's findings will finally allow scientists to observe how drugs work at an intracellular level, which will allow them to fully understand how they interact with the hundreds of cell receptors at the same time and what side-effects they are likely to produce.

Professor Humphries added: "Our findings will be of great interest to scientists and pharmaceutical companies as they open up new avenues for drug development and testing."

Aeron Haworth | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>