Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Catching the common cold virus: BYU researchers coming down with the rhinovirus genome

A new study by Brigham Young University researchers on the virus behind nearly half of all cold infections explains how and where evolution occurs in the rhinovirus genome and what this means for possible vaccines.

The study is reported in the April issue of the academic journal Molecular Biology and Evolution.

"There are a lot of different approaches to treating the cold, none of which seem to be effective," said Keith Crandall, professor of biology and co-author of the study. "This is partly because we haven't spent a lot of time studying the virus and its history to see how it's responding to the human immune system and drugs."

The BYU team studied genomic sequences available online and used computer algorithms to estimate how the rhinovirus is related to other viruses.

According to Nicole Lewis-Rogers, a postdoctoral fellow in the Biology Department and lead author on the study, the rhinovirus is similar to the polio virus, whose vaccine was announced in 1955. But while the polio virus has just three subspecies, the rhinovirus has more than 100 subspecies, which continually evolve.

"These viruses could be under the same constraints and yet change differently," Lewis-Rogers said. "That's why it is so hard to create a vaccine."

Through a computer program developed at BYU, Lewis-Rogers' team was able to identify the parts of the virus genome that enable resistance to drugs and the human immune system.

The immune system does a good job of recognizing viral contaminants and getting rid of them, as do new drugs, but the rhinovirus has responded to these defenses by changing its genome so that it is not so easily recognized.

"The virus is evolving solutions against the immune system and drugs," Crandall said. "The more we can learn about how the virus evolves solutions, the better we can rid the body of these infections."

Understanding where change occurs in the virus genome will help virologists who work to design drugs that target the rhinovirus.

"If you've got 10,000 bits of information, this narrows it down to a handful," Lewis-Rogers said. "Here is where you can start looking."

Lewis-Rogers and Crandall hope scientists will use these insights to build better drugs to combat the virus in the most effective way.

BYU undergraduate Matthew Bendall is also a co-author on the study, which was funded by the USDA. Bendall will next pursue a master's in bioinformatics at BYU.

Michael Smart | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>