Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalyst structure identified in an operating PEM fuel cell

07.10.2016

Research at the group of Dr Moniek Tromp of the University of Amsterdam's research priority area Sustainable Chemistry has revealed the structure of the palladium catalyst for hydrogen oxidation in proton exchange membrane (PEM) fuel cells. Contrary to current views the results, obtained by applying X-ray spectroscopy under operating conditions, indicate the existence of a hydride phase throughout the operating range.

The research, performed in collaboration with the Technical Electrochemistry research group of Prof. Dr Hubert Gasteiger at the Technical University of Munich (Department of Chemistry), has recently been published in ACS Catalysis.


Photograph and schematic lay-out of the experimental setup, featuring an improved flow field design and a reduced thickness of the graphite window (500 µm). The latter is transparent to X-rays at the K edge energies (6 8 keV) of transition metal catalysts such as manganese, iron, cobalt and nickel. The improved cell design therefore also enables operando XAS studies of commonly investigated fuel cell catalysts based on these 3d transition metal alloys with platinum, or of PGM-free iron-based catalysts.

Investigating palladium

In proton exchange membrane fuel cells (PEMFC) electrons are generated by means of the electrochemical oxidation of hydrogen, thus producing the electrical power to drive an electric car or provide electricity for industry or households. The best currently known electro-catalysts for this electron-generating oxidation reaction are the so-called platinum-group metals, with platinum itself as the most active catalyst.

Palladium provides an interesting alternative for platinum since it is only slightly less active but more widely available and less expensive. However, in practice the activity of palladium decreases at high anodic potentials. This has until now been explained by a change in its catalytic properties, mainly hydride decomposition in the bulk of the material and oxide formation at the surface.

These explanations are disputable, however, since they are based on laboratory experiments at room temperature. Typical operating conditions of a low temperature PEMFC involve temperatures up to 80 °C. Both for a fundamental understanding of the performance and for the development of non-Pt based catalysts it is important to characterize the catalyst under real reaction conditions.

Improved experimental set-up

The current Amsterdam/Munich research cooperation bridges the gap between electrochemical studies in liquid electrolytes at room temperature and real operating fuel cells at 80 °C. In ACS Catalysis the researchers present electrochemical isotherms for the absorption of hydrogen into a Pd catalyst as a function of applied potential, temperature, and reaction atmosphere.

They were obtained with a new, improved X-ray absorption spectroscopy (XAS) electrochemical fuel cell, allowing the investigation of PEMFC electrodes during operation (operando spectroscopy). The research was performed at the BM30B/FAME beamline of the European Synchrotron Radiation Facility in Grenoble.

Hydride phase maintained

The operando spectroscopic characterization during hydrogen oxidation unequivocally demonstrates that the hydride phase is maintained under practical operating conditions of a fuel cell anode, even at high anodic potentials. The transition from a hydride to a metallic state, previously observed in electrochemical cells based on a liquid electrolyte, does not occur.

The researchers argue that the reaction environment of operating PEMFC's is so much unlike that in room-temperature liquid electrolytes cells that the chemical state of the Pd catalyst is completely different. One important feature explaining this is the orders of magnitude higher mass-transport rates in PEMFC's.

The recent findings highlight the necessity of characterizing the properties of electro-catalysts under realistic operating conditions. Furthermore the researchers argue that in fact for all electro-catalytic reactions in which the reactant is supplied in a gaseous form - not just for the hydrogen oxidation in a fuel cell - it is of utmost importance to maintain appropriate mass transfer regimes when establishing structure-activity relationships.

Full bibliographic information

Armin Siebel, Yelena Gorlin, Julien Durst, Olivier Proux, Frédéric Hasché, Moniek Tromp, and Hubert A. Gasteiger: Identification of Catalyst Structure during the Hydrogen Oxidation Reaction in an Operating PEM Fuel Cell ACS Catal., 2016, 6, pp 7326–7334 DOI: 10.1021/acscatal.6b02157

For further information, please contact:

Johan Rheeder

+31 20 525 3591

J.P.S.Rheeder@uva.nl

Johan Rheeder | AlphaGalileo
Further information:
http://www.uva.nl

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>