Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Case of Animals Making Their Own Carotene

30.04.2010
The insects known as aphids can make their own essential nutrients called carotenoids, according to University of Arizona researchers.

No other animals are known to make the potent antioxidants. Until now scientists thought the only way animals could obtain the orangey-red compounds was from their diet.

"It is written everywhere that animals do not make carotenoids," said Nancy Moran, leader of the UA team that overturned the conventional wisdom.

Carotenoids are building blocks for molecules crucial for vision, healthy skin, bone growth and other key physiological functions. Beta-carotene, the pigment that makes carrots orange, is the building block for Vitamin A.

"Once you start realizing how widespread carotenoids are, you realize that they're everywhere in life," said Moran, a UA Regents' Professor of ecology and evolutionary biology.

"The yellow color in egg yolks, the pink in shrimp and salmon, the pink in flamingos, tomatoes, carrots, peppers, Mexican poppies, marigolds - the yellow, orange, and red are all carotenoids."

Moran and her co-author Tyler Jarvik also figured out how the aphids they studied, known as pea aphids, acquired the ability to make carotenoids.

"What happened is a fungal gene got into an aphid and was copied," Moran said. She added that, although gene transfers between microorganisms are common, finding a functional fungus gene as part of an animal's DNA is a first.

"Animals have a lot of requirements that reflect ancestral gene loss. This is why we require so many amino acids and vitamins in the diet," she said.

"Until now it has been thought that there is simply no way to regain these lost capabilities. But this case in aphids shows that it is indeed possible to acquire the capacity to make needed compounds.

"Possibly this will be an extraordinarily rare case. But so far in genomic studies, a single initial case usually turns out to be only an example of something more widespread."

She and Jarvik, a research specialist in UA's department of chemistry and biochemistry, report their discovery in the paper, "Lateral Transfer of Genes from Fungi Underlies Carotenoid Production in Aphids," to be published in the April 30 issue of the journal Science. The National Science Foundation funded the research.

A lucky accident in the lab plus the recent sequencing of the pea aphid genome made the discovery possible, Moran said.

Pea aphids, known to scientists as Acyrthosiphon pisum, are either red or green. Aphids are clonal - the mothers give birth to daughters that are genetically identical to their mothers. So when an aphid in the Moran lab's red 5A strain began giving birth to yellowish-green babies, Moran and her colleagues knew they were looking at the results of a mutation.

"We named it 5AY for yellowish," she said. "That yellowish mutant happened in 2007. We just kept the strain as a sort of pet in the lab. I figured that one day we'd figure out how that happened."

Symbiotic bacteria live within aphids in specialized cells. The bacteria, which are passed from mother to babies, supply the insects with crucial nutrition. If their bacteria die, the aphids die.

Moran, who has been studying the pea aphid-bacteria system for decades, already knew the three main species of symbiotic bacteria did not make carotenoids.

She also was pretty sure the aphids didn't get their carotenoids from their diet. Aphids eat by sucking the phloem sap from plants, but the sap is carotenoid-poor. In addition, the carotenoids in the aphids were different from those usually found in plants.

In late 2009, after the complete DNA sequence of the pea aphid became available to researchers, she decided to search it for carotenoid genes.

All organisms use the same biosynthetic pathway to make carotenoids, which made searching for carotenoid genes straightforward, she said.

Lucky for Moran, the researchers who sequenced the pea aphid genome used red aphids, which have an extra copy of the carotenoid gene, making the gene causing the red color easier to find.

Next, she figured out whether the genes were from pea aphid DNA or from uncommon symbiotic bacteria or were just contamination from fungi in the sample.

In the laboratory, Moran and Jarvik found eliminating the symbiotic bacteria from a strain of aphids did not change the color of the offspring, meaning the symbiotic bacteria were not the source of the red color.

In addition, tracing the lineages of the red, green and yellow strains of aphids showed the colors had a Mendelian inheritance pattern, indicating the DNA that coded for red was part of the aphid's DNA.

That inheritance pattern also fit with another team's research that suggested both colors were present in nature because red aphids are more susceptible to parasitic wasps, whereas green aphids are more susceptible to predators such as lady-bird beetles.

The final piece of the puzzle was figuring out where the genes came from.
The particular sequence of aphid DNA that coded for carotenoids differed from bacterial carotenoid genes and matched those from some fungi.

Moran said a long-term association between aphids and pathogenic fungi could make such a gene transfer possible.

The discovery illustrates "the interweaving of organisms and their genomes over time and their merging in different ways," she said. "The distinctness of different genomes and organisms and lineages is much less than we thought."

Contact:
Nancy Moran, 520-621-3581
nmoran@email.arizona.edu

Mari N. Jensen | University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>