Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon nanostructures -- elixir or poison?

01.04.2010
Los Alamos researchers find a case where size really does matter

A Los Alamos National Laboratory toxicologist and a multidisciplinary team of researchers have documented potential cellular damage from "fullerenes"—soccer-ball-shaped, cage-like molecules composed of 60 carbon atoms. The team also noted that this particular type of damage might hold hope for treatment of Parkinson's disease, Alzheimer's disease, or even cancer.

The research recently appeared in Toxicology and Applied Pharmacology and represents the first-ever observation of this kind for spherical fullerenes, also known as buckyballs, which take their names from the late Buckminster Fuller because they resemble the geodesic dome concept that he popularized.

Engineered carbon nanoparticles, which include fullerenes, are increasing in use worldwide. Each buckyball is a skeletal cage of carbon about the size of a virus. They show potential for creating stronger, lighter structures or acting as tiny delivery mechanisms for designer drugs or antibiotics, among other uses. About four to five tons of carbon nanoparticles are manufactured annually.

"Nanomaterials are the 21st century revolution," said Los Alamos toxicologist Rashi Iyer, the principal research lead and coauthor of the paper. "We are going to have to live with them and deal with them, and the question becomes, 'How are we going to maximize our use of these materials and minimize their impact on us and the environment?'"

Iyer and lead author Jun Gao, also a Los Alamos toxicologist, exposed cultured human skin cells to several distinct types of buckyballs. The differences in the buckyballs lay in the spatial arrangement of short branches of molecules coming off of the main buckyball structure. One buckyball variation, called the "tris" configuration, had three molecular branches off the main structure on one hemisphere; another variation, called the "hexa" configuration, had six branches off the main structure in a roughly symmetrical arrangement; the last type was a plain buckyball.

The researchers found that cells exposed to the tris configuration underwent premature senescence—what might be described as a state of suspended animation. In other words, the cells did not die as cells normally should, nor did they divide or grow. This arrest of the natural cellular life cycle after exposure to the tris-configured buckyballs may compromise normal organ development, leading to disease within a living organism. In short, the tris buckyballs were toxic to human skin cells.

Moreover, the cells exposed to the tris arrangement caused unique molecular level responses suggesting that tris-fullerenes may potentially interfere with normal immune responses induced by viruses. The team is now pursuing research to determine if cells exposed to this form of fullerenes may be more susceptible to viral infections.

Ironically, the discovery could also lead to a novel treatment strategy for combating several debilitating diseases. In diseases like Parkinson's or Alzheimer's, nerve cells die or degenerate to a nonfunctional state. A mechanism to induce senescence in specific nerve cells could delay or eliminate onset of the diseases. Similarly, a disease like cancer, which spreads and thrives through unregulated replication of cancer cells, might be fought through induced senescence. This strategy could stop the cells from dividing and provide doctors with more time to kill the abnormal cells.

Because of the minute size of nanomaterials, the primary hazard associated with them has been potential inhalation—similar to the concern over asbestos exposure.

"Already, from a toxicological point of view, this research is useful because it shows that if you have the choice to use a tris- or a hexa-arrangement for an application involving buckyballs, the hexa-arrangement is probably the better choice," said Iyer. "These studies may provide guidance for new nanomaterial design and development."

These results were offshoots from a study (Shreve, Wang, and Iyer) funded to understand the interactions between buckyballs and biological membranes. Los Alamos National Laboratory has taken a proactive role by initiating a nanomaterial bioassessmnet program with the intention of keeping its nanomaterial workers safe while facilitating the discovery of high-function, low-bioimpact nanomaterials with the potential to benefit national security missions. In addition to Gao and Iyer, the LANL program includes Jennifer Hollingsworth, Yi Jiang, Jian Song, Paul Welch, Hsing Lin Wang, Srinivas Iyer, and Gabriel Montaño.

Los Alamos National Laboratory researchers will continue to attempt to understand the potential effects of exposure to nanomaterials in much the same way that Los Alamos was a worldwide leader in understanding the effects of radiation during the Lab's early history. Los Alamos workers using nanomaterials will continue to follow protocols that provide the highest degree of protection from potential exposure.

Meantime, Los Alamos research into nanomaterials provides a cautionary tale for nanomaterial use, as well as early foundations for worker protection. Right now, there are no federal regulations for the use of nanomaterials. Disclosure of use by companies or individuals is voluntary. As nanomaterial use increases, understanding of their potential hazards should also increase.

About Los Alamos National Laboratory (www.lanl.gov)

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>