Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon dioxide forms polymeric materials under high pressure

25.03.2009
Carbon dioxide is a molecular gas at ambient conditions and an important consitituent of the Earth's atmosphere.

It is also a likely component in the Earth's mantle, and it plays an important role in the life cycle. But at high pressure, carbon dioxide can transform to a solid.

The commonly known solid-state form of carbon dioxide is the so called "dry ice", which is a molecular crystal and has many important applications, e.g. food producation and storage, artificial fog in theatre and artificial rainfall, etc.

Even more interesting, as the pressure increases and temperature varies, the intra- and inter-molecular interactions of carbon dioxide change dramatically and this results in different crystal structures in polymeric dense phases with interesting physical properties, such as "super-hardness". Thus carbon dioxide has become an extremely hot topic in science in the last decade.

Recently, a collaborative study between the research groups in Canada, Germany, Slovakia, Italy and USA achieved progress on this highly interested compound. Using a novel computer-based simulation method called metadynamics combined with accurate quantum mechanical calculations, they found that a molecular solid called CO2-II transfers to a layered polymeric structure at a pressure of 60 GPa (1 GPa is approximately 10000 atmospheres) and temperature at 600 Kelvin.

Based on the good agreement between their calculated Raman spectra and X-ray diffraction patterns and the previous experimental values, a new interpretation of a previous experimental result is given. A recently identified dense phase VI found in experiment, assumed to be disordered stishovite-like structure, is instead interpreted as the result of an incomplete transformation from the molecular phase into a final layered polymeric structure.

In addition, a new ?-cristobalite-like CO2 as found in silicon dioxide, is predicted to be formed from CO2-III via an intermediate structure at 80 GPa and temperature lower than room temperature. Defects in the crystals increase with temperature and CO2 transforms to an amorphous form when temperature is higher than room temperature, consistent with previous experiments.

These results obtained from fully dynamical simulations reveal hitherto unknown microscopic transformation mechanisms, and illustrate the transformation from a molecular solid characterized by only intra-molecular bonding to a polymerized structure. The transformation takes place at pressures within the range found in the Earth's mantle, where a significant amount of oxidized carbon is thought to be present, either in the form of carbonates or as a fluid. The large and abrupt changes in the bonding properties of CO2 reported here hint to possible discontinuities in the carbon chemistry of the mantle. Their article by Dr. Jian Sun et al. is soon to be (has been) published in the prestigious journal - Proceedings of the National Academy of Sciences USA.

Title

Jian Sun, Dennis D. Klug, Roman Martonak, Javier Antonio Montoya, Mal-Soon Lee, Sandro Scandolo and Erio Tosatti: High-pressure polymeric phases of carbon dioxide. In: PNAS early edition, http://www.pnas.org_cgi_doi_10.1073_pnas.0812624106

Further Information

Dr. Jian Sun, Lehrstuhl für Theoretische Chemie der Ruhr-Universität Bochum, D-44780 Bochum, Tel. +49 (0)234 32 22121, E-Mail: jian.sun@theochem.ruhr-uni-bochum.de

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/
http://www.pnas.org_cgi_doi_10.1073_pnas.0812624106

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>