Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer’s Next Magic Bullet May Be Magic Shotgun

18.06.2012
Network Approach to Drug Design May Yield More Effective and Less Toxic Cancer Drugs, UCSF Study Suggests
A new approach to drug design, pioneered by a group of researchers at the University of California, San Francisco (UCSF) and Mt. Sinai, New York, promises to help identify future drugs to fight cancer and other diseases that will be more effective and have fewer side effects.

Rather than seeking to find magic bullets — chemicals that specifically attack one gene or protein involved in one particular part of a disease process — the new approach looks to find “magic shotguns” by sifting through the known universe of chemicals to find the few special molecules that broadly disrupt the whole diseases process.

“We’ve always been looking for magic bullets,” said Kevan Shokat, PhD, a Howard Hughes Medical Institute Investigator and chair of the Department of Cellular and Molecular Pharmacology at UCSF. “This is a magic shotgun — it doesn’t inhibit one target but a set of targets — and that gives us a much, much better ability to stop the cancer without causing as many side effects.”

Described in the June 7, 2012 issue of the journal Nature, the magic shotgun approach has already yielded two potential drugs, called AD80 and AD81, which in fruit flies were more effective and less toxic than the drug vandetanib, which was approved by the U.S. Food & Drug Administration last year for the treatment of a certain type of thyroid cancer.

Expanding the Targets to Lower a Drug’s Toxicity

Drug design is basically all about disruption. In any disease, there are numerous molecular interactions and other processes that take place within specific tissues, and in the broadest sense, most drugs are simply chemicals that interfere with the proteins and genes involved in those processes. The better a drug disrupts key parts of a disease process, the more effective it is.

The toxicity of a drug, on the other hand, refers to how it also disrupts other parts of the body’s system. Drugs always fall short of perfection in this sense, and all pharmaceuticals have some level of toxicity due to unwanted interactions the drugs have with other molecules in the body.

Scientists use something called the therapeutic index (the ratio of effective dose to toxic dose) as a way of defining how severe the side effects of a given drug would be. Many of the safest drugs on the market have therapeutic indexes that are 20 or higher — meaning that you would have to take 20 times the prescribed dose to suffer severe side effects.

Many cancer drugs, on the other hand, have a therapeutic index of 1. In other words, the amount of the drug you need to take to treat the cancer is the exact amount that causes severe side effects. The problem, said Shokat, comes down to the fact that cancer drug targets are so similar to normal human proteins that the drugs have widespread effects felt far outside the tumor.

While suffering the side effects of drugs is a reality that many people with cancer bravely face, finding ways of minimizing this toxicity is a big goal pharmaceutical companies would like to solve. Shokat and his colleagues believe the shotgun approach is one way to do this.

The dogma that the best drugs are the most selective could be wrong, he said, and for cancer a magic shotgun may be more effective than a magic bullet.

Looking at fruit flies, they found a way to screen compounds to find the few that best disrupt an entire network of interacting genes and proteins. Rather than judging a compound according to how well it inhibits a specific target, they judged as best the compounds that inhibited not only that specific target but disrupted other parts of the network while not interacting with other genes and proteins that would cause toxic side effects.

The article, “Chemical genetic discovery of targets and anti-targets for cancer polypharmacology” by Arvin C. Dar, Tirtha K. Das, Kevan M. Shokat and Ross Cagan appears in the June 7, 2012 issue of the journal Nature.

This work was supported by the American Cancer Society, The Waxman Foundation, and the National Institutes of Health—through grants R01CA109730, R01CA084309, R01EB001987 and P01 CA081403-11.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

Further reports about: Drug Delivery MAGIC Nature Immunology Shotgun UCSF bullet cancer drug disease process drugs magic bullets

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>