Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a soy gene catalogue

04.05.2009
A RIKEN-led consortium of scientists has compiled a massive collection of complete gene sequences for the invaluable soybean plant

In the thousands of years since the soybean was first cultivated, it has only become more useful and important, providing nutrition for billions of humans and animals as well as raw material for a numerous industrial applications, including lubricants, inks and plastics.

As valuable as this crop already is, however, a better understanding of its genomic content could enable scientists to cultivate still more useful strains that are hardier or better suited for specific applications.

A first draft of the soybean genome was recently made publicly available, but an even more useful resource would be a complete database of full-length, gene sequences—containing not only protein-coding regions, but also the regulatory sequences that govern when and where a protein is produced.

A consortium of scientists from across Japan, led by Kazuo Shinozaki and colleagues at the RIKEN Plant Science Center in Yokohama, has pooled their resources to tackle this task, and recently announced a major step forward: the successful sequencing of more than 6,500 complete gene transcripts1.

They began by pooling RNA isolated from plants cultivated under a wide variety of conditions, such as low temperature or high salt, to ensure expression of as many different genes as possible. They subsequently converted these RNAs into complementary DNA (cDNA), which makes them suitable for cloning and sequencing. They obtained sequence data from nearly 40,000 clones, which were subsequently computationally assembled into overlapping ‘sequence scaffolds’. From these, they identified a total of 6,570 full-length cDNAs.

The resulting dataset is important not only in terms of magnitude, but novelty as well. “Our collection is the first full-length cDNA resource of soybean in the world,” explains Taishi Umezawa, co-lead author on this work, along with Tetsuya Sakurai. Importantly, many of these sequences represent previously uncharacterized transcripts, as well as quite a few expressed sequences that appear to be soybean-specific—from the raw sequence data, Shinozaki’s team identified more than 500 sequences with no apparent equivalent in other plant species.

The team has deposited their data with Japan’s National Bioresource Project (NBRP), making them publicly available for broader analysis, and is also collaborating with American researchers towards the annotation of their genomic data. Their findings have also borne commercial fruit, however, in the form of soybean-specific ‘DNA chips’, now available to the scientific community from Agilent Technologies. “These will be useful for studying gene expression profiles in soybean,” says Umezawa, “and we are using them to investigate environmental stress-responsive gene expression.”

Reference
Umezawa, T., Sakurai, T., Totoki, Y., Toyoda, A., Seki, M., Ishiwata, A., Akiyama, K., Kurotani, A., Yoshida, T., Mochida, K. et al. Sequencing and analysis of approximately 40 000 soybean cDNA clones from a full-length-enriched cDNA library. DNA Research 15, 333–346 (2008).

The corresponding authors for this highlight are based at the RIKEN Gene Discovery Research Team and the RIKEN Integrated Genome Informatics Research Unit

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/697/
http://www.researchsea.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>