Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a soy gene catalogue

04.05.2009
A RIKEN-led consortium of scientists has compiled a massive collection of complete gene sequences for the invaluable soybean plant

In the thousands of years since the soybean was first cultivated, it has only become more useful and important, providing nutrition for billions of humans and animals as well as raw material for a numerous industrial applications, including lubricants, inks and plastics.

As valuable as this crop already is, however, a better understanding of its genomic content could enable scientists to cultivate still more useful strains that are hardier or better suited for specific applications.

A first draft of the soybean genome was recently made publicly available, but an even more useful resource would be a complete database of full-length, gene sequences—containing not only protein-coding regions, but also the regulatory sequences that govern when and where a protein is produced.

A consortium of scientists from across Japan, led by Kazuo Shinozaki and colleagues at the RIKEN Plant Science Center in Yokohama, has pooled their resources to tackle this task, and recently announced a major step forward: the successful sequencing of more than 6,500 complete gene transcripts1.

They began by pooling RNA isolated from plants cultivated under a wide variety of conditions, such as low temperature or high salt, to ensure expression of as many different genes as possible. They subsequently converted these RNAs into complementary DNA (cDNA), which makes them suitable for cloning and sequencing. They obtained sequence data from nearly 40,000 clones, which were subsequently computationally assembled into overlapping ‘sequence scaffolds’. From these, they identified a total of 6,570 full-length cDNAs.

The resulting dataset is important not only in terms of magnitude, but novelty as well. “Our collection is the first full-length cDNA resource of soybean in the world,” explains Taishi Umezawa, co-lead author on this work, along with Tetsuya Sakurai. Importantly, many of these sequences represent previously uncharacterized transcripts, as well as quite a few expressed sequences that appear to be soybean-specific—from the raw sequence data, Shinozaki’s team identified more than 500 sequences with no apparent equivalent in other plant species.

The team has deposited their data with Japan’s National Bioresource Project (NBRP), making them publicly available for broader analysis, and is also collaborating with American researchers towards the annotation of their genomic data. Their findings have also borne commercial fruit, however, in the form of soybean-specific ‘DNA chips’, now available to the scientific community from Agilent Technologies. “These will be useful for studying gene expression profiles in soybean,” says Umezawa, “and we are using them to investigate environmental stress-responsive gene expression.”

Reference
Umezawa, T., Sakurai, T., Totoki, Y., Toyoda, A., Seki, M., Ishiwata, A., Akiyama, K., Kurotani, A., Yoshida, T., Mochida, K. et al. Sequencing and analysis of approximately 40 000 soybean cDNA clones from a full-length-enriched cDNA library. DNA Research 15, 333–346 (2008).

The corresponding authors for this highlight are based at the RIKEN Gene Discovery Research Team and the RIKEN Integrated Genome Informatics Research Unit

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/697/
http://www.researchsea.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>