Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a soy gene catalogue

04.05.2009
A RIKEN-led consortium of scientists has compiled a massive collection of complete gene sequences for the invaluable soybean plant

In the thousands of years since the soybean was first cultivated, it has only become more useful and important, providing nutrition for billions of humans and animals as well as raw material for a numerous industrial applications, including lubricants, inks and plastics.

As valuable as this crop already is, however, a better understanding of its genomic content could enable scientists to cultivate still more useful strains that are hardier or better suited for specific applications.

A first draft of the soybean genome was recently made publicly available, but an even more useful resource would be a complete database of full-length, gene sequences—containing not only protein-coding regions, but also the regulatory sequences that govern when and where a protein is produced.

A consortium of scientists from across Japan, led by Kazuo Shinozaki and colleagues at the RIKEN Plant Science Center in Yokohama, has pooled their resources to tackle this task, and recently announced a major step forward: the successful sequencing of more than 6,500 complete gene transcripts1.

They began by pooling RNA isolated from plants cultivated under a wide variety of conditions, such as low temperature or high salt, to ensure expression of as many different genes as possible. They subsequently converted these RNAs into complementary DNA (cDNA), which makes them suitable for cloning and sequencing. They obtained sequence data from nearly 40,000 clones, which were subsequently computationally assembled into overlapping ‘sequence scaffolds’. From these, they identified a total of 6,570 full-length cDNAs.

The resulting dataset is important not only in terms of magnitude, but novelty as well. “Our collection is the first full-length cDNA resource of soybean in the world,” explains Taishi Umezawa, co-lead author on this work, along with Tetsuya Sakurai. Importantly, many of these sequences represent previously uncharacterized transcripts, as well as quite a few expressed sequences that appear to be soybean-specific—from the raw sequence data, Shinozaki’s team identified more than 500 sequences with no apparent equivalent in other plant species.

The team has deposited their data with Japan’s National Bioresource Project (NBRP), making them publicly available for broader analysis, and is also collaborating with American researchers towards the annotation of their genomic data. Their findings have also borne commercial fruit, however, in the form of soybean-specific ‘DNA chips’, now available to the scientific community from Agilent Technologies. “These will be useful for studying gene expression profiles in soybean,” says Umezawa, “and we are using them to investigate environmental stress-responsive gene expression.”

Reference
Umezawa, T., Sakurai, T., Totoki, Y., Toyoda, A., Seki, M., Ishiwata, A., Akiyama, K., Kurotani, A., Yoshida, T., Mochida, K. et al. Sequencing and analysis of approximately 40 000 soybean cDNA clones from a full-length-enriched cDNA library. DNA Research 15, 333–346 (2008).

The corresponding authors for this highlight are based at the RIKEN Gene Discovery Research Team and the RIKEN Integrated Genome Informatics Research Unit

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/697/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>