Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bright prospects: Repairing Neurons with light

17.11.2015

Scientists at Helmholtz Zentrum München have succeeded in stimulating the regeneration of injured neurons in living fish by the use of light. To this end, they employed so-called Optogenetics, i.e. light inducible protein activation. The results have recently been published in the journal ‘Current Biology’.

The nervous system is built to last a lifetime, but diverse diseases or environmental insults can overpower the capacity of neurons to maintain function or to repair after trauma.


Zebrafish neurons projecting to the brain (green). One neuron expresses a light-activatable enzyme (red). Scientist were able to stimulate the regeneration of injured neurons using optogenetics.

Source: Helmholtz Zentrum München (HMGU)

A team led by Dr. Hernán López-Schier, head of the Research Unit Sensory Biology and Organogenesis at Helmholtz Zentrum München, now succeeded in promoting the repair of an injured neural circuit in zebrafish.

Key for the researchers’ success was the messenger molecule cAMP, which is produced by an enzyme called adenylyl cyclase. For their experiment, the scientist used a special form of this enzyme which is inducible by blue light. Therefore, the scientists are able to specifically modulate the production of cAMP in cells expressing this enzyme by the use of blue light.*

The researchers used this system in zebrafish larvae** which had interrupted sensory lateralis nerves***. “However, when blue light was shone on severed nerves that expressed a photoactivatable adenylyl cyclase, their repair was dramatically increased,” remembers PhD student Yan Xiao who is the first author of the study.

“While untreated nerve terminals only made synapses again in five percent of the cases, about 30% did after photostimulation.” In simple terms: the scientists were able to stimulate the repair of a neuronal circuit by elevating cAMP with blue light.

“Optogenetics have revolutionized neurobiology, since the method has already been used to modify for instance the electrical activity of neurons. However, our results show for the first time how the repair of a complex neural circuit in a whole animal can be promoted remotely by the use of light”, explains López-Schier.

But the head of the study thinks that this is only the beginning: “Our results are a first step. Now we would like to investigate, whether these results can be extrapolated beyond single neurons in zebrafish, to more complex neuronal circuits of higher animals.” The scientist could think of using this method for future therapeutic approaches for the treatment of neuropathies like those occurring in the wake of Diabetes and other diseases.


Further information

Background
* Optogenetics: As the name indicates, this cutting-edge technology combines elements of Optics and Genetics. Scientists make use of proteins which are sensitive to certain wavelengths of light. These are brought into the target cells with certain genetic methods. The so treated cells then change their respective phenotype depending on the exposure to light.

** Larvae of zebrafish are particularly well suited for optogenetic approaches, since their skin in transparent/translucent. Thus, the light can reach the respective target cells easily.

*** These nerves normally communicate external sensory signals to the brain, but cannot normally repair after injury.

Original publication:
Xiao, Y. et al. (2015). Optogenetic stimulation of neuronal repair, Current Biology, DOI: 10.1016/j.cub.2015.09.038

Link to the publication
http://www.cell.com/current-biology/abstract/S0960-9822(15)01149-5

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.http://www.helmholtz-muenchen.de/en/index.html

The independent Sensory Biology and Organogenesis (SBO) research unit works with a zebra fish model system to examine cellular, molecular and physiological reactions to mechanical stimuli and sensory disorders. The focus areas are physical and mechanical tissue properties. The objectives are to examine the mechanisms that control sensory system development, self-regulation and regeneration and to research the evolution of the sensory organs that perceive the environment. http://www.helmholtz-muenchen.de/en/sbo/index.html

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49 89 3187 2238 - Fax: +49 89 3187 3324 – E-mail: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Dr. Hernán López-Schier, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit Sensory Biology and Organogenesis, Ingolstädter Landstr. 1, 85764 Neuherberg – Phone: +49 89 3187 2187 – E-mail: hernan.lopez-schier@helmholtz-muenchen.de

Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Biology Health Helmholtz Repairing Zebrafish blue light cAMP diseases enzyme neurons

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>