Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain stem cell quiescence needs to be actively maintained in Drosophila

20.04.2016

Hippo signaling pathway regulates quiescence in the neural stem cells of Drosophila larvae

Neural stem cells are responsible for the formation of differentiated daughter cells in the developing brain. If no new cells are needed, the stem cells may enter a resting phase called quiescence. Biologists at Johannes Gutenberg University Mainz (JGU) have now discovered that the phases of quiescence in the Drosophila fruit fly central nervous system are controlled by the Hippo signaling pathway.


Neural stem cells (red) interact with their niche glial cells (green) to remain in quiescence.

photo/©: AG Berger

Drosophila serves as a model organism that helps geneticists to decode the molecular fundamentals of cellular biology and unravel mechanisms that are conserved in human beings and other vertebrates.

Stem cells are undifferentiated cells able to produce specialized cell types. In the development and growth phases or during regeneration, stem cells provide backup and can generate sizeable amounts of daughter cells. Disruptions to the process can, in turn, result in tumor formation or early depletion of the stem cell reservoir.

"In other words, the activity of stem cells needs to be precisely regulated to meet the needs of an organism. If no cell production is required, the stem cells remain in a quiescent state," explained Dr. Christian Berger of the Institute of Genetics at Mainz University.

His work group has now been able to show how the resting phase is maintained in Drosophila neural stem cells. Protein interactions between niche glial cells and the stem cells activate the Hippo signaling pathway in the stem cells to repress growth and cell division.

"The resting phases need to be actively triggered and maintained," added Berger. The Hippo signaling pathway, which is highly conserved up to humans, was known to play a critical role in organ size determination, like, for example, in the liver, but has not been demonstrated to influence neural stem cells in the central nervous system.

The experiments were performed using Drosophila larvae. At the beginning of larval life, neural stem cells in the larval nervous system are naturally quiescent. Once the larvae take up food, the stem cells are activated and begin to grow. The Mainz-based team of geneticists working with Dr. Christian Berger has now discovered that growth starts earlier if the Hippo signaling pathway is deactivated, meaning the resting phase can no longer be correctly maintained.

In addition, Berger's team has identified two surface proteins located on the neural stem cells and the surrounding niche glial cells that are responsible for the interactions between these cells. When the scientists remove these surface proteins from the niche glial cells, the stem cells begin to grow and prematurely form new daughter cells. In the physiological development process, this effect is regulated by the intake of nutrition. When the larvae begin to eat, the surface proteins Crumbs and Echinoid on the niche glial cells are deactivated about ten hours later and the stem cells begin to grow.

The final component in this long series of signal sequences is the Yorkie effector protein that is the decisive factor at the end of the Hippo signaling pathway and determines the start of reactivation, growth, and division in the stem cells.

"Our results with Drosophila exhibit surprising similarities in some respects to what we know about the regulation of resting phases in mammals, allowing for speculation as to whether the Hippo signaling pathway in neural stem cells functions in the same manner in both vertebrates and invertebrates," stated the paper's first author Rouven Ding.

In order to strengthen the relevance of their results in mice, Berger's work group has started a joint project with Professor Benedikt Berninger of the Focus Program Translational Neurosciences (FTN) at the Mainz University Medical Center. Their findings may turn out to be important when it comes to research into cerebral cancer, since it is known that components of the Hippo signaling pathway, such as neurofibromin 2, are involved in the generation of brain tumors.

ublication:
Rouven Ding et al.
The Hippo signalling pathway maintains quiescence in Drosophila neural stem cells
Nature Communications, 29 January 2016
DOI: 10.1038/ncomms10510
http://www.nature.com/ncomms/2016/160129/ncomms10510/full/ncomms10510.html

Further information:
Dr. Christian Berger
Institute of Genetics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-24328
e-mail: bergerc@uni-mainz.de
http://www.blogs.uni-mainz.de/fb10-agberger/

Weitere Informationen:

http://www.uni-mainz.de/presse/20225_ENG_HTML.php - press release ;
http://www.nature.com/ncomms/2016/160129/ncomms10510/full/ncomms10510.html - Publication in Nature Communications

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>