Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain stem cell quiescence needs to be actively maintained in Drosophila

20.04.2016

Hippo signaling pathway regulates quiescence in the neural stem cells of Drosophila larvae

Neural stem cells are responsible for the formation of differentiated daughter cells in the developing brain. If no new cells are needed, the stem cells may enter a resting phase called quiescence. Biologists at Johannes Gutenberg University Mainz (JGU) have now discovered that the phases of quiescence in the Drosophila fruit fly central nervous system are controlled by the Hippo signaling pathway.


Neural stem cells (red) interact with their niche glial cells (green) to remain in quiescence.

photo/©: AG Berger

Drosophila serves as a model organism that helps geneticists to decode the molecular fundamentals of cellular biology and unravel mechanisms that are conserved in human beings and other vertebrates.

Stem cells are undifferentiated cells able to produce specialized cell types. In the development and growth phases or during regeneration, stem cells provide backup and can generate sizeable amounts of daughter cells. Disruptions to the process can, in turn, result in tumor formation or early depletion of the stem cell reservoir.

"In other words, the activity of stem cells needs to be precisely regulated to meet the needs of an organism. If no cell production is required, the stem cells remain in a quiescent state," explained Dr. Christian Berger of the Institute of Genetics at Mainz University.

His work group has now been able to show how the resting phase is maintained in Drosophila neural stem cells. Protein interactions between niche glial cells and the stem cells activate the Hippo signaling pathway in the stem cells to repress growth and cell division.

"The resting phases need to be actively triggered and maintained," added Berger. The Hippo signaling pathway, which is highly conserved up to humans, was known to play a critical role in organ size determination, like, for example, in the liver, but has not been demonstrated to influence neural stem cells in the central nervous system.

The experiments were performed using Drosophila larvae. At the beginning of larval life, neural stem cells in the larval nervous system are naturally quiescent. Once the larvae take up food, the stem cells are activated and begin to grow. The Mainz-based team of geneticists working with Dr. Christian Berger has now discovered that growth starts earlier if the Hippo signaling pathway is deactivated, meaning the resting phase can no longer be correctly maintained.

In addition, Berger's team has identified two surface proteins located on the neural stem cells and the surrounding niche glial cells that are responsible for the interactions between these cells. When the scientists remove these surface proteins from the niche glial cells, the stem cells begin to grow and prematurely form new daughter cells. In the physiological development process, this effect is regulated by the intake of nutrition. When the larvae begin to eat, the surface proteins Crumbs and Echinoid on the niche glial cells are deactivated about ten hours later and the stem cells begin to grow.

The final component in this long series of signal sequences is the Yorkie effector protein that is the decisive factor at the end of the Hippo signaling pathway and determines the start of reactivation, growth, and division in the stem cells.

"Our results with Drosophila exhibit surprising similarities in some respects to what we know about the regulation of resting phases in mammals, allowing for speculation as to whether the Hippo signaling pathway in neural stem cells functions in the same manner in both vertebrates and invertebrates," stated the paper's first author Rouven Ding.

In order to strengthen the relevance of their results in mice, Berger's work group has started a joint project with Professor Benedikt Berninger of the Focus Program Translational Neurosciences (FTN) at the Mainz University Medical Center. Their findings may turn out to be important when it comes to research into cerebral cancer, since it is known that components of the Hippo signaling pathway, such as neurofibromin 2, are involved in the generation of brain tumors.

ublication:
Rouven Ding et al.
The Hippo signalling pathway maintains quiescence in Drosophila neural stem cells
Nature Communications, 29 January 2016
DOI: 10.1038/ncomms10510
http://www.nature.com/ncomms/2016/160129/ncomms10510/full/ncomms10510.html

Further information:
Dr. Christian Berger
Institute of Genetics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-24328
e-mail: bergerc@uni-mainz.de
http://www.blogs.uni-mainz.de/fb10-agberger/

Weitere Informationen:

http://www.uni-mainz.de/presse/20225_ENG_HTML.php - press release ;
http://www.nature.com/ncomms/2016/160129/ncomms10510/full/ncomms10510.html - Publication in Nature Communications

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>