Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the brain creates the 'buzz' that helps ideas spread

08.07.2013
How do ideas spread? What messages will go viral on social media, and can this be predicted?

UCLA psychologists have taken a significant step toward answering these questions, identifying for the first time the brain regions associated with the successful spread of ideas, often called "buzz."

The research has a broad range of implications, the study authors say, and could lead to more effective public health campaigns, more persuasive advertisements and better ways for teachers to communicate with students.

"Our study suggests that people are regularly attuned to how the things they're seeing will be useful and interesting, not just to themselves but to other people," said the study's senior author, Matthew Lieberman, a UCLA professor of psychology and of psychiatry and biobehavioral sciences and author of the forthcoming book "Social: Why Our Brains Are Wired to Connect." "We always seem to be on the lookout for who else will find this helpful, amusing or interesting, and our brain data are showing evidence of that. At the first encounter with information, people are already using the brain network involved in thinking about how this can be interesting to other people. We're wired to want to share information with other people. I think that is a profound statement about the social nature of our minds."

The study findings are published in the online edition of the journal Psychological Science, with print publication to follow later this summer.

"Before this study, we didn't know what brain regions were associated with ideas that become contagious, and we didn't know what regions were associated with being an effective communicator of ideas," said lead author Emily Falk, who conducted the research as a UCLA doctoral student in Lieberman's lab and is currently a faculty member at the University of Pennsylvania's Annenberg School for Communication. "Now we have mapped the brain regions associated with ideas that are likely to be contagious and are associated with being a good 'idea salesperson.' In the future, we would like to be able to use these brain maps to forecast what ideas are likely to be successful and who is likely to be effective at spreading them."

In the first part of the study, 19 UCLA students (average age 21), underwent functional magnetic resonance imaging (fMRI) brain scans at UCLA's Ahmanson–Lovelace Brain Mapping Center as they saw and heard information about 24 potential television pilot ideas. Among the fictitious pilots — which were presented by a separate group of students — were a show about former beauty-queen mothers who want their daughters to follow in their footsteps; a Spanish soap opera about a young woman and her relationships; a reality show in which contestants travel to countries with harsh environments; a program about teenage vampires and werewolves; and a show about best friends and rivals in a crime family.

The students exposed to these TV pilot ideas were asked to envision themselves as television studio interns who would decide whether or not they would recommend each idea to their "producers." These students made videotaped assessments of each pilot.

Another group of 79 UCLA undergraduates (average age 21) was asked to act as the "producers." These students watched the interns' videos assessments of the pilots and then made their own ratings about the pilot ideas based on those assessments.

Lieberman and Falk wanted to learn which brain regions were activated when the interns were first exposed to information they would later pass on to others.

"We're constantly being exposed to information on Facebook, Twitter and so on," said Lieberman. "Some of it we pass on, and a lot of it we don't. Is there something that happens in the moment we first see it — maybe before we even realize we might pass it on — that is different for those things that we will pass on successfully versus those that we won't?"

It turns out, there is. The psychologists found that the interns who were especially good at persuading the producers showed significantly more activation in a brain region known as the temporoparietal junction, or TPJ, at the time they were first exposed to the pilot ideas they would later recommend. They had more activation in this region than the interns who were less persuasive and more activation than they themselves had when exposed to pilot ideas they didn't like. The psychologists call this the "salesperson effect."

"It was the only region in the brain that showed this effect," Lieberman said. One might have thought brain regions associated with memory would show more activation, but that was not the case, he said.

"We wanted to explore what differentiates ideas that bomb from ideas that go viral," Falk said. "We found that increased activity in the TPJ was associated with an increased ability to convince others to get on board with their favorite ideas. Nobody had looked before at which brain regions are associated with the successful spread of ideas. You might expect people to be most enthusiastic and opinionated about ideas that they themselves are excited about, but our research suggests that's not the whole story. Thinking about what appeals to others may be even more important."

The TPJ, located on the outer surface of the brain, is part of what is known as the brain's "mentalizing network," which is involved in thinking about what other people think and feel. The network also includes the dorsomedial prefrontal cortex, located in the middle of the brain.

"When we read fiction or watch a movie, we're entering the minds of the characters — that's mentalizing," Lieberman said. "As soon as you hear a good joke, you think, 'Who can I tell this to and who can't I tell?' Making this judgment will activate these two brain regions. If we're playing poker and I'm trying to figure out if you're bluffing, that's going to invoke this network. And when I see someone on Capitol Hill testifying and I'm thinking whether they are lying or telling the truth, that's going to invoke these two brain regions.

"Good ideas turn on the mentalizing system," he said. "They make us want to tell other people."

The interns who showed more activity in their mentalizing system when they saw the pilots they intended to recommend were then more successful in convincing the producers to also recommend those pilots, the psychologists found.

"As I'm looking at an idea, I might be thinking about what other people are likely to value, and that might make me a better idea salesperson later," Falk said.

By further studying the neural activity in these brain regions to see what information and ideas activate these regions more, psychologists potentially could predict which advertisements are most likely to spread and go viral and which will be most effective, Lieberman and Falk said.

Such knowledge could also benefit public health campaigns aimed at everything from reducing risky behaviors among teenagers to combating cancer, smoking and obesity.

"The explosion of new communication technologies, combined with novel analytic tools, promises to dramatically expand our understanding of how ideas spread," Falk said. "We're laying basic science foundations to addressimportant public health questions that are difficult to answer otherwise — about what makes campaigns successful and how we can improve their impact."

As we may like particular radio DJs who play music we enjoy, the Internet has led us to act as "information DJs" who share things that we think will be of interest to people in our networks, Lieberman said.

"What is new about our study is the finding that the mentalizing network is involved when I read something and decide who else might be interested in it," he said. "This is similar to what an advertiser has to do. It's not enough to have a product that people should like."

Co-authors of the study are Sylvia Morelli, a former graduate student in Lieberman's lab who is now a postdoctoral scholar at Stanford University; Locke Welbourn, a UCLA graduate student in Lieberman's laboratory; and Karl Dambacher, a former UCLA undergraduate research assistant.

UCLA is California's largest university, with an enrollment of more than 40,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and six faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>