Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow-derived cells differentiate in the brain through mechanisms of plasticity

20.12.2011
Bone marrow-derived stem cells (BMDCs) have been recognized as a source for transplantation because they can contribute to different cell populations in a variety of organs under both normal and pathological conditions.

Many BMDC studies have been aimed at repairing damaged brain tissue or helping to restore lost neural function, with much research focused on BMDC transplants to the cerebellum at the back of the brain. In a recent study, a research team from Spain has found that BMDCs, can contribute to a variety of neural cell types in other areas of the brain as well, including the olfactory bulb, because of a mechanism of "plasticity".

Their results are published in the current issue of Cell Transplantation (20:8) now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"To our knowledge, ours is the first work reporting the BMDC's contribution to the olfactory neurons," said study corresponding author Dr. Eduardo Weruaga of the University of Salamanca, Spain. "We have shown for the first time how BMDCs contribute to the central nervous system in different ways in the same animal depending on the region and cell-specific factors."

In this study, researchers grafted bone marrow cells into mutant mice suffering from the degeneration of specific neuronal populations at different ages, then compared them to similarly transplanted healthy controls. An increase in the number of BMDCs was found along the lifespan in both experimental groups. Six weeks after transplantation, however, more bone marrow-derived microglial cells were observed in the olfactory bulbs of the test animals where the degeneration of mitral cells was still in progress. The difference was not observed in the cerebellum where cell degeneration had been completed.

"Our findings demonstrate that the degree of neurodegenerative environment can foster the recruitment of neural elements derived from bone marrow," explained Dr. Weruaga. "But we also have provided the first evidence that BMDCs can contribute simultaneously to different encephalic areas through different mechanisms of plasticity – cell fusion for Purkinje cells - among the largest and most elaborately dendritic neurons in the human brain - and differentiation for olfactory bulb interneurons."

Dr. Weruaga noted that they confirmed that BMDCs fuse with Purkinje cells but, unexpectedly, they found that the neurodegenerative environment had no effect on the behavior of the BMDCs.

"Interestingly, the contribution of BMDCs occurred through these two different plasticity mechanisms, which strongly suggests that plasticity mechanisms may be modulated by region and cell type-specific factors," he said.

Contact: Dr. Eduardo Werunga, Labratorio de Plasticidad Neuronal y Neurorreparacion. Instituto de Neurosciencias de Castilla y Leon. Universidad de Salamanca. C/ Pinto Fernando Gallego, N 1. E-37007 Salamanca, Spain.
Tel. +34-923-294500, ext 5324
Fax. +34-923-294549
Email ewp@usal.es
Citation: Recio, J. S.; Álvarez-Dolado, M.; Díaz, D.; Baltanás, F. C.; Piquer-Gil, M.; Alonso, J. R.; Werunga, E. Bone Marrow Contributes Simultaneously to Different Neural Types in the Central Nervous System Through Different Mechanisms of Plasticity. Cell Transplant. 20(8):1179-1192; 2011.

"This study shows a potential new contribution of bone marrow derived cells following transplantation into the brain, making these cells highly versatile, in their ability to both differentiate into and fuse with endogenous neurons" said Dr. Paul R. Sanberg , coeditor-in-chief of CELL TRANSPLANTATION and distinguished professor of Neuroscience at the Center of Excellence for Aging and Brain Repair, University of South Florida.

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

David Eve | EurekAlert!
Further information:
http://www.miami.edu

Further reports about: Brain Brain Repair Purkinje cells bone marrow brain aging cell death cell type

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Cells adapt ultra-rapidly to zero gravity

28.02.2017 | Health and Medicine

An Atom Trap for Water Dating

28.02.2017 | Earth Sciences

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>