Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow-derived cells differentiate in the brain through mechanisms of plasticity

20.12.2011
Bone marrow-derived stem cells (BMDCs) have been recognized as a source for transplantation because they can contribute to different cell populations in a variety of organs under both normal and pathological conditions.

Many BMDC studies have been aimed at repairing damaged brain tissue or helping to restore lost neural function, with much research focused on BMDC transplants to the cerebellum at the back of the brain. In a recent study, a research team from Spain has found that BMDCs, can contribute to a variety of neural cell types in other areas of the brain as well, including the olfactory bulb, because of a mechanism of "plasticity".

Their results are published in the current issue of Cell Transplantation (20:8) now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"To our knowledge, ours is the first work reporting the BMDC's contribution to the olfactory neurons," said study corresponding author Dr. Eduardo Weruaga of the University of Salamanca, Spain. "We have shown for the first time how BMDCs contribute to the central nervous system in different ways in the same animal depending on the region and cell-specific factors."

In this study, researchers grafted bone marrow cells into mutant mice suffering from the degeneration of specific neuronal populations at different ages, then compared them to similarly transplanted healthy controls. An increase in the number of BMDCs was found along the lifespan in both experimental groups. Six weeks after transplantation, however, more bone marrow-derived microglial cells were observed in the olfactory bulbs of the test animals where the degeneration of mitral cells was still in progress. The difference was not observed in the cerebellum where cell degeneration had been completed.

"Our findings demonstrate that the degree of neurodegenerative environment can foster the recruitment of neural elements derived from bone marrow," explained Dr. Weruaga. "But we also have provided the first evidence that BMDCs can contribute simultaneously to different encephalic areas through different mechanisms of plasticity – cell fusion for Purkinje cells - among the largest and most elaborately dendritic neurons in the human brain - and differentiation for olfactory bulb interneurons."

Dr. Weruaga noted that they confirmed that BMDCs fuse with Purkinje cells but, unexpectedly, they found that the neurodegenerative environment had no effect on the behavior of the BMDCs.

"Interestingly, the contribution of BMDCs occurred through these two different plasticity mechanisms, which strongly suggests that plasticity mechanisms may be modulated by region and cell type-specific factors," he said.

Contact: Dr. Eduardo Werunga, Labratorio de Plasticidad Neuronal y Neurorreparacion. Instituto de Neurosciencias de Castilla y Leon. Universidad de Salamanca. C/ Pinto Fernando Gallego, N 1. E-37007 Salamanca, Spain.
Tel. +34-923-294500, ext 5324
Fax. +34-923-294549
Email ewp@usal.es
Citation: Recio, J. S.; Álvarez-Dolado, M.; Díaz, D.; Baltanás, F. C.; Piquer-Gil, M.; Alonso, J. R.; Werunga, E. Bone Marrow Contributes Simultaneously to Different Neural Types in the Central Nervous System Through Different Mechanisms of Plasticity. Cell Transplant. 20(8):1179-1192; 2011.

"This study shows a potential new contribution of bone marrow derived cells following transplantation into the brain, making these cells highly versatile, in their ability to both differentiate into and fuse with endogenous neurons" said Dr. Paul R. Sanberg , coeditor-in-chief of CELL TRANSPLANTATION and distinguished professor of Neuroscience at the Center of Excellence for Aging and Brain Repair, University of South Florida.

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

David Eve | EurekAlert!
Further information:
http://www.miami.edu

Further reports about: Brain Brain Repair Purkinje cells bone marrow brain aging cell death cell type

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>