Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blunting rice disease

03.06.2014

UD researchers aim to disarm a 'cereal killer'

A fungus that kills an estimated 30 percent of the world’s rice crop may finally have met its match, thanks to a research discovery made by scientists at the University of Delaware and the University of California at Davis.


UD researchers Harsh Bais, Carla Spence (left) and Nicole Donofrio examine rice plants. They have identified a naturally occurring microbe in soil that inhibits the devastating rice blast fungus.

The research team, led by Harsh Bais, associate professor of plant and soil sciences in UD’s College of Agriculture and Natural Resources, has identified a naturally occurring microbe living right in the soil around rice plants — Pseudomonas chlororaphis EA105 — that inhibits the devastating fungus known as rice blast. What’s more, the beneficial soil microbe also induces a system-wide defense response in rice plants to battle the fungus.

The research, which is funded by the National Science Foundation, is published in BMC Plant Biologyand includes, along with Bais, authors Carla Spence, a doctoral student in the Department of Biological Sciences, Emily Alff, who recently earned her master’s degree in plant and soil sciences, and Nicole Donofrio, associate professor of plant and soil sciences, all from UD; and SundaresanVenkatesan, professor, Cameron Johnson, assistant scientist, and graduate student Cassandra Ramos, all from UC Davis. 

“We truly are working to disarm a ‘cereal killer’ and to do so using a natural, organic control,” says Bais, in his laboratory at the Delaware Biotechnology Institute. In addition to rice, a distinct population of the rice blast fungus also now threatens wheat production worldwide.

“Rice blast is a relentless killer, a force to be reckoned with, especially as rice is a staple in the daily diet of more than half the world’s population — that’s over 3 billion people,” Bais notes. “As global population continues to grow, biocontrol bacteria may be an important key for farmers to overcome crop losses due to plant disease and to produce more food from the same acre of land.”

According to Bais, the rice blast fungus (Magnaporthe oryzae) attacks rice plants through spores resembling pressure plugs that penetrate the plant tissue. Once these spores infiltrate the cell wall, the fungus “eats the plant alive,” as Bais says. Common symptoms of rice blast are telltale diamond shaped-lesions on the plant leaves.

In order to do its work, the spore must produce a structure called the appressorium, a filament that adheres to the plant surface like an anchor. Without it, the fungus can’t invade the plant.

In a research study published in the journal Planta this past October, Bais and colleagues Spence, Donofrio and Vidhyavathi Raman showed that Pseudomonas chlororaphis EA105 strongly inhibited the formation of the appressorium and that priming rice plants with EA105 prior to infection by rice blast decreased lesion size.

For her work, Spence, the lead author, recently received the Carson Best Paper Award for the best scientific paper published by a Ph.D. student in biological sciences at UD. 

The next step in the research was to sample the rhizosphere, the soil in the region around the roots of rice plants growing in the field, to reveal the microbial community living there and to attempt to elucidate their roles.

Thanks to DNA sequencing techniques, Bais says that identifying the various microorganisms in soil is easy. But understanding the role of each of those microorganisms is a continuing story.

A natural control for a deadly fungus

“Everyone knows what’s there, but we don’t know what they are doing,” Bais says of the microbes. To home in on the source of the antifungal impact, Bais and his colleagues are relying on what he refers to as “old school culturing” to find out if a single bacterium or a group of different bacteria are at work.

In their study reported in BMC Plant Biology, the researchers used gene sequencing techniques to identify 11 naturally occurring bacteria isolated from rice plants grown in the field in California. These bacteria were then tested in the laboratory, with Pseudomonas chlororaphis EA105 demonstrating the strongest impact on rice blast. The soil microbe reduced the formation of the anchor-like appressoria by nearly 90 percent while also inhibiting fungal growth by 76 percent. 

Bais points out that although hydrogen cyanide is commonly produced by pseudomonad bacteria, the antifungal impact of Pseudomonas chlororaphis EA105 appears to be independent of cyanide production. 

Applying a natural soil microbe as an antifungal treatment versus chemical pesticides offers multiple benefits to farmers and the environment, Bais says. 

“Rice blast quickly learns how to get around synthetics — most manmade pesticides are effective only for about three years,” Bais says. “So it’s really cool to find a biological that can attenuate this thing.” 

Bais, who also has conducted multiple studies with beneficial microbes in the Bacillus family, envisions a day when farmers will treat plants with a “magic cocktail of microbes” naturally found in soil to help boost their immunity and growth. 

This summer, he and his colleagues will conduct field trials using Pseudomonas chlororaphis EA105 on rice plants grown on the UD farm. He also will work with farmers in the central states in India.

The research is supported by a $1.9 million grant from the National Science Foundation’s Plant Genome Research Project.

Article by Tracey Bryant

Photo by Kathy F. Atkinson

Donna O'Brien | Eurek Alert!
Further information:
http://www.udel.edu/udaily/2014/may/microbe-rice-blast-052714.html

Further reports about: BMC Bais Delaware Pseudomonas antifungal bacteria farmers formation fungus microbe microbes pesticides spores

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>