Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blunting rice disease

03.06.2014

UD researchers aim to disarm a 'cereal killer'

A fungus that kills an estimated 30 percent of the world’s rice crop may finally have met its match, thanks to a research discovery made by scientists at the University of Delaware and the University of California at Davis.


UD researchers Harsh Bais, Carla Spence (left) and Nicole Donofrio examine rice plants. They have identified a naturally occurring microbe in soil that inhibits the devastating rice blast fungus.

The research team, led by Harsh Bais, associate professor of plant and soil sciences in UD’s College of Agriculture and Natural Resources, has identified a naturally occurring microbe living right in the soil around rice plants — Pseudomonas chlororaphis EA105 — that inhibits the devastating fungus known as rice blast. What’s more, the beneficial soil microbe also induces a system-wide defense response in rice plants to battle the fungus.

The research, which is funded by the National Science Foundation, is published in BMC Plant Biologyand includes, along with Bais, authors Carla Spence, a doctoral student in the Department of Biological Sciences, Emily Alff, who recently earned her master’s degree in plant and soil sciences, and Nicole Donofrio, associate professor of plant and soil sciences, all from UD; and SundaresanVenkatesan, professor, Cameron Johnson, assistant scientist, and graduate student Cassandra Ramos, all from UC Davis. 

“We truly are working to disarm a ‘cereal killer’ and to do so using a natural, organic control,” says Bais, in his laboratory at the Delaware Biotechnology Institute. In addition to rice, a distinct population of the rice blast fungus also now threatens wheat production worldwide.

“Rice blast is a relentless killer, a force to be reckoned with, especially as rice is a staple in the daily diet of more than half the world’s population — that’s over 3 billion people,” Bais notes. “As global population continues to grow, biocontrol bacteria may be an important key for farmers to overcome crop losses due to plant disease and to produce more food from the same acre of land.”

According to Bais, the rice blast fungus (Magnaporthe oryzae) attacks rice plants through spores resembling pressure plugs that penetrate the plant tissue. Once these spores infiltrate the cell wall, the fungus “eats the plant alive,” as Bais says. Common symptoms of rice blast are telltale diamond shaped-lesions on the plant leaves.

In order to do its work, the spore must produce a structure called the appressorium, a filament that adheres to the plant surface like an anchor. Without it, the fungus can’t invade the plant.

In a research study published in the journal Planta this past October, Bais and colleagues Spence, Donofrio and Vidhyavathi Raman showed that Pseudomonas chlororaphis EA105 strongly inhibited the formation of the appressorium and that priming rice plants with EA105 prior to infection by rice blast decreased lesion size.

For her work, Spence, the lead author, recently received the Carson Best Paper Award for the best scientific paper published by a Ph.D. student in biological sciences at UD. 

The next step in the research was to sample the rhizosphere, the soil in the region around the roots of rice plants growing in the field, to reveal the microbial community living there and to attempt to elucidate their roles.

Thanks to DNA sequencing techniques, Bais says that identifying the various microorganisms in soil is easy. But understanding the role of each of those microorganisms is a continuing story.

A natural control for a deadly fungus

“Everyone knows what’s there, but we don’t know what they are doing,” Bais says of the microbes. To home in on the source of the antifungal impact, Bais and his colleagues are relying on what he refers to as “old school culturing” to find out if a single bacterium or a group of different bacteria are at work.

In their study reported in BMC Plant Biology, the researchers used gene sequencing techniques to identify 11 naturally occurring bacteria isolated from rice plants grown in the field in California. These bacteria were then tested in the laboratory, with Pseudomonas chlororaphis EA105 demonstrating the strongest impact on rice blast. The soil microbe reduced the formation of the anchor-like appressoria by nearly 90 percent while also inhibiting fungal growth by 76 percent. 

Bais points out that although hydrogen cyanide is commonly produced by pseudomonad bacteria, the antifungal impact of Pseudomonas chlororaphis EA105 appears to be independent of cyanide production. 

Applying a natural soil microbe as an antifungal treatment versus chemical pesticides offers multiple benefits to farmers and the environment, Bais says. 

“Rice blast quickly learns how to get around synthetics — most manmade pesticides are effective only for about three years,” Bais says. “So it’s really cool to find a biological that can attenuate this thing.” 

Bais, who also has conducted multiple studies with beneficial microbes in the Bacillus family, envisions a day when farmers will treat plants with a “magic cocktail of microbes” naturally found in soil to help boost their immunity and growth. 

This summer, he and his colleagues will conduct field trials using Pseudomonas chlororaphis EA105 on rice plants grown on the UD farm. He also will work with farmers in the central states in India.

The research is supported by a $1.9 million grant from the National Science Foundation’s Plant Genome Research Project.

Article by Tracey Bryant

Photo by Kathy F. Atkinson

Donna O'Brien | Eurek Alert!
Further information:
http://www.udel.edu/udaily/2014/may/microbe-rice-blast-052714.html

Further reports about: BMC Bais Delaware Pseudomonas antifungal bacteria farmers formation fungus microbe microbes pesticides spores

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>