Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birds lose color vision in twilight

04.11.2009
Research at the Lund University Vision Group can now show that the color vision of birds stops working considerably earlier in the course of the day than was previously believed, in fact, in the twilight. Birds need between 5 and 20 times as much light as humans to see colors.

It has long been known that birds have highly developed color vision that vastly surpasses that of humans. Birds see both more colors and ultraviolet light. However, it was not known what amount of light is necessary for birds to see colors, which has limited the validity of all research on this color vision to bright sunlight only.

"Using behavioral experiments we can now demonstrate that birds lose their color vision in the twilight and show just how much light is needed for birds to be able to interpret color signals," says Olle Lind, a doctoral candidate at the Department of Cell and Organism Biology.

For humans and horses, color vision ceases to work after dusk, at light intensities roughly corresponding to bright moonlight. However, the light threshold is not the same for all vertebrates. Geckos, for instance, can see colors at night. In the experiments performed by the Lund University Vision Group, the color vision of birds stopped working at light intensities corresponding to what prevails shortly after the sun goes down. Birds need between 5 and 20 times as much light as humans to see colors. Among all the vertebrates tested thus far, birds are the first to lose their color vision in the twilight, even though they are the vertebrates that probably see colors best of all in the daylight.

With these findings it is now possible to start to draw conclusions about how birds use their color vision at dawn and dusk. The findings also direct our focus to previous research about how important color is when it comes to eggs or begging baby birds in enclosed nests. Inside enclosed nests it is dark even when the sun is bright outside.

"Against the background of our new discoveries, we should now re-evaluate earlier research about how birds perceive the color of their eggs and their young in the nest," says Olle Lind.

The research findings were recently published in Journal of Experimental Biology 2009, 212: pp. 3693-3699.

For more information, please contact:
Doctoral candidate Olle Lind, cell phone: +46 (0)730-758509, olle.lind@cob.lu.se

Professor Almut Kelber, phone: +46 (0)46-2223454, almut.kelber@cob.lu.se

Pressofficer: Lena.Bjork_Blixt@kanslin.lu.se or +46-46 222 71 86

Lena Björk Blixt | idw
Further information:
http://www.vr.se

Further reports about: bright moonlight color vision of birds synthetic biology

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>