Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birds lose color vision in twilight

04.11.2009
Research at the Lund University Vision Group can now show that the color vision of birds stops working considerably earlier in the course of the day than was previously believed, in fact, in the twilight. Birds need between 5 and 20 times as much light as humans to see colors.

It has long been known that birds have highly developed color vision that vastly surpasses that of humans. Birds see both more colors and ultraviolet light. However, it was not known what amount of light is necessary for birds to see colors, which has limited the validity of all research on this color vision to bright sunlight only.

"Using behavioral experiments we can now demonstrate that birds lose their color vision in the twilight and show just how much light is needed for birds to be able to interpret color signals," says Olle Lind, a doctoral candidate at the Department of Cell and Organism Biology.

For humans and horses, color vision ceases to work after dusk, at light intensities roughly corresponding to bright moonlight. However, the light threshold is not the same for all vertebrates. Geckos, for instance, can see colors at night. In the experiments performed by the Lund University Vision Group, the color vision of birds stopped working at light intensities corresponding to what prevails shortly after the sun goes down. Birds need between 5 and 20 times as much light as humans to see colors. Among all the vertebrates tested thus far, birds are the first to lose their color vision in the twilight, even though they are the vertebrates that probably see colors best of all in the daylight.

With these findings it is now possible to start to draw conclusions about how birds use their color vision at dawn and dusk. The findings also direct our focus to previous research about how important color is when it comes to eggs or begging baby birds in enclosed nests. Inside enclosed nests it is dark even when the sun is bright outside.

"Against the background of our new discoveries, we should now re-evaluate earlier research about how birds perceive the color of their eggs and their young in the nest," says Olle Lind.

The research findings were recently published in Journal of Experimental Biology 2009, 212: pp. 3693-3699.

For more information, please contact:
Doctoral candidate Olle Lind, cell phone: +46 (0)730-758509, olle.lind@cob.lu.se

Professor Almut Kelber, phone: +46 (0)46-2223454, almut.kelber@cob.lu.se

Pressofficer: Lena.Bjork_Blixt@kanslin.lu.se or +46-46 222 71 86

Lena Björk Blixt | idw
Further information:
http://www.vr.se

Further reports about: bright moonlight color vision of birds synthetic biology

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>