Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical breakthrough: Blood vessels for lab-grown tissues

12.01.2011
Rice, BCM discovery addresses key roadblock to growing replacement tissues, organs

Researchers from Rice University and Baylor College of Medicine (BCM) have broken one of the major roadblocks on the path to growing transplantable tissue in the lab: They've found a way to grow the blood vessels and capillaries needed to keep tissues alive.

The new research is available online and due to appear in the January issue of the journal Acta Biomaterialia.

"The inability to grow blood-vessel networks -- or vasculature -- in lab-grown tissues is the leading problem in regenerative medicine today," said lead co-author Jennifer West, department chair and the Isabel C. Cameron Professor of Bioengineering at Rice. "If you don't have blood supply, you cannot make a tissue structure that is thicker than a couple hundred microns."

As its base material, a team of researchers led by West and BCM molecular physiologist Mary Dickinson chose polyethylene glycol (PEG), a nontoxic plastic that's widely used in medical devices and food. Building on 10 years of research in West's lab, the scientists modified the PEG to mimic the body's extracellular matrix -- the network of proteins and polysaccharides that make up a substantial portion of most tissues.

West, Dickinson, Rice graduate student Jennifer Saik, Rice undergraduate Emily Watkins and Rice-BCM graduate student Daniel Gould combined the modified PEG with two kinds of cells -- both of which are needed for blood-vessel formation. Using light that locks the PEG polymer strands into a solid gel, they created soft hydrogels that contained living cells and growth factors. After that, they filmed the hydrogels for 72 hours. By tagging each type of cell with a different colored fluorescent marker, the team was able to watch as the cells gradually formed capillaries throughout the soft, plastic gel.

To test these new vascular networks, the team implanted the hydrogels into the corneas of mice, where no natural vasculature exists. After injecting a dye into the mice's bloodstream, the researchers confirmed normal blood flow in the newly grown capillaries.

Another key advance, published by West and graduate student Joseph Hoffmann in November, involved the creation of a new technique called "two-photon lithography," an ultrasensitive way of using light to create intricate three-dimensional patterns within the soft PEG hydrogels. West said the patterning technique allows the engineers to exert a fine level of control over where cells move and grow. In follow-up experiments, also in collaboration with the Dickinson lab at BCM, West and her team plan to use the technique to grow blood vessels in predetermined patterns.

The research was supported by the National Science Foundation and the National Institutes of Health. West's work was conducted in her lab at Rice's BioScience Research Collaborative (BRC). The BRC is an innovative space where scientists and educators from Rice University and other Texas Medical Center institutions work together to perform leading research that benefits human medicine and health.

Related materials:

To read the complete study, go to http://tinyurl.com/5s676qz.

A video is available here at http://www.youtube.com/watch?v=JtMifCkTHTo.

Caption: This time-lapse image shows how two types of cells -- which were tagged with fluorescent dye -- organize themselves into a functioning capillary networks within 72 hours.

A photo of Jennifer West is available at http://www.rice.edu/nationalmedia/images/jennifer-west.

Credit: Jeff Fitlow/Rice University

Caption: Rice University bioengineering professor Jennifer West (right) and graduate student Jennifer Saik.

Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,485 undergraduates and 2,275 graduate students; selectivity -- 13 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of less than 6-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>