Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker predicts asthma in children

15.07.2010
Children with elevated levels of exhaled nitric oxide (Fraction of Exhaled Nitric Oxide, FeNO) are at increased risk for developing asthma, particularly among children without a parental history of the disease, researchers at the Keck School of Medicine of the University of Southern California, Los Angeles, USA, report in the European Respiratory Journal.

The findings published ahead of print in the ERJ suggest that FeNO may be a useful biomarker for identifying children at risk for the disease, and in developing strategies for preventing asthma. Researchers found that children with the highest levels of FeNO were more than twice as likely to develop asthma compared to those with the lowest levels. Higher levels of FeNO were linked with development of asthma most often in children whose parents had no history of the disease.

Nitric oxide is a gas that is produced by the cells that line the inner wall of the lungs’ airways, and may be a marker of the inflammatory process that occurs in the lungs prior to asthma onset. Although a number of studies have documented the growing prevalence of asthma during the past several decades, the factors causing the rapid rise of the disease are not fully understood.

“We believe this is the first study to demonstrate the predictive value of FeNO for identifying children who are at risk for developing asthma,” said Tracy Bastain, M.P.H., a doctoral student in the Department of Preventive Medicine at the Keck School of Medicine and the lead author of the study. “Our results were strongest in children whose parents had never had asthma, suggesting that FeNO might help to identify additional susceptible children.”

The USC study drew upon data from the Children’s Health Study (CHS), the longest epidemiologic investigation ever conducted on environmental contribution to children’s respiratory health. In 2004, USC researchers measured the level of FeNO in 2,206 healthy, asthma-free children from 13 communities in Southern California. Between 2004 and 2007, they tracked the respiratory health of the children with annual follow-up questionnaires.

Previous studies have found that FeNO is elevated in children with current asthma or allergies. However, researchers at USC were able to draw upon a large cohort of healthy children to identify FeNO as a potential biomarker for asthma development, Bastain said. Further studies are needed to establish whether FeNO can be used in the clinical setting to assess a child’s individual risk for developing asthma.

“Asthma is a very important clinical and public health problem, and there is still much to be learned about the causes of asthma before the burden of asthma can be reduced,” said Frank Gilliland, M.D., Ph.D., professor of preventive medicine at the Keck School of Medicine, director of the Southern California Environmental Health Sciences Center and senior author of the study. “Showing a link between FeNO and later asthma development provides new clues to the development of asthma.”

The study was funded by the National Institute of Environmental Health Sciences, the National Heart, Lung and Blood Institute, the Environmental Protection Agency, and the Hastings Foundation.

Title of the original article: “Exhaled Nitric Oxide, Susceptibility and New-Onset Asthma in the Children`s Health Study.”

Dr. Anka Stegmeier-Petroianu | idw
Further information:
http://www.ersnet.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>