Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker predicts asthma in children

15.07.2010
Children with elevated levels of exhaled nitric oxide (Fraction of Exhaled Nitric Oxide, FeNO) are at increased risk for developing asthma, particularly among children without a parental history of the disease, researchers at the Keck School of Medicine of the University of Southern California, Los Angeles, USA, report in the European Respiratory Journal.

The findings published ahead of print in the ERJ suggest that FeNO may be a useful biomarker for identifying children at risk for the disease, and in developing strategies for preventing asthma. Researchers found that children with the highest levels of FeNO were more than twice as likely to develop asthma compared to those with the lowest levels. Higher levels of FeNO were linked with development of asthma most often in children whose parents had no history of the disease.

Nitric oxide is a gas that is produced by the cells that line the inner wall of the lungs’ airways, and may be a marker of the inflammatory process that occurs in the lungs prior to asthma onset. Although a number of studies have documented the growing prevalence of asthma during the past several decades, the factors causing the rapid rise of the disease are not fully understood.

“We believe this is the first study to demonstrate the predictive value of FeNO for identifying children who are at risk for developing asthma,” said Tracy Bastain, M.P.H., a doctoral student in the Department of Preventive Medicine at the Keck School of Medicine and the lead author of the study. “Our results were strongest in children whose parents had never had asthma, suggesting that FeNO might help to identify additional susceptible children.”

The USC study drew upon data from the Children’s Health Study (CHS), the longest epidemiologic investigation ever conducted on environmental contribution to children’s respiratory health. In 2004, USC researchers measured the level of FeNO in 2,206 healthy, asthma-free children from 13 communities in Southern California. Between 2004 and 2007, they tracked the respiratory health of the children with annual follow-up questionnaires.

Previous studies have found that FeNO is elevated in children with current asthma or allergies. However, researchers at USC were able to draw upon a large cohort of healthy children to identify FeNO as a potential biomarker for asthma development, Bastain said. Further studies are needed to establish whether FeNO can be used in the clinical setting to assess a child’s individual risk for developing asthma.

“Asthma is a very important clinical and public health problem, and there is still much to be learned about the causes of asthma before the burden of asthma can be reduced,” said Frank Gilliland, M.D., Ph.D., professor of preventive medicine at the Keck School of Medicine, director of the Southern California Environmental Health Sciences Center and senior author of the study. “Showing a link between FeNO and later asthma development provides new clues to the development of asthma.”

The study was funded by the National Institute of Environmental Health Sciences, the National Heart, Lung and Blood Institute, the Environmental Protection Agency, and the Hastings Foundation.

Title of the original article: “Exhaled Nitric Oxide, Susceptibility and New-Onset Asthma in the Children`s Health Study.”

Dr. Anka Stegmeier-Petroianu | idw
Further information:
http://www.ersnet.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>