Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biofuel grasslands better for birds than ethanol staple corn, researchers find

07.01.2011
Developing biofuel from native perennials instead of corn in the Midwest’s rolling grasslands would better protect threatened bird populations, Michigan State University research suggests.

Federal mandates and market forces both are expected to promote rising biofuel production, MSU biologist Bruce Robertson says, but the environmental consequences of turning more acreage over to row crops for fuel are a serious concern.

Ethanol in America is chiefly made from corn, but research is focusing on how to cost-effectively process cellulosic sources such as wood, corn stalks and grasses. Perennial grasses promise low cost and energy inputs – planting, fertilizing, watering – and the new study quantifies substantial environmental benefits.

“Native perennial grasses might provide an opportunity to produce biomass in ways that are compatible with the conservation of biodiversity and important ecosystem services such as pest control,” Robertson said. “This work demonstrates that next-generation biofuel crops have potential to provide a new source of habitat for a threatened group of birds.”

With its rich variety of ecosystems, including historic prairie, southern Michigan provided a convenient place to compare bird populations in 20 sites of varying size for each of the three fuel feedstocks. Grassland birds are of special concern, Robertson said, having suffered more dramatic population losses than any other group of North American birds.

In the first such empirical comparison and the first to simultaneously study grassland bird communities across habitat scales, Robertson and colleagues found that bugs and the birds that feed on them thrive more in mixed prairie grasses than in corn. Almost twice as many species made their homes in grasses, while plots of switchgrass, a federally designated model fuel crop, fell between the two in their ability to sustain biodiversity.

The larger the plot of any type, researchers found, the greater the concentration of birds supported. But if grasslands offer conservation and biofuel opportunities, Robertson said, the biodiversity benefits could decrease as biofuel grass feedstocks are bred and cultivated for commercial uniformity.

Robertson was a research associate at MSU’s W.K. Kellogg Biological Station in Kalamazoo County during the two-year research project. Today he is an MSU adjunct entomology professor and a postdoctoral fellow at the Smithsonian Conservation Biology Institute Migratory Bird Center in Washington, D.C. His research colleagues included John A. Hannah Distinguished Professor of plant biology Douglas Schemske and research associate Liz Loomis, both at the Kellogg Biological Station; Patrick Doran of The Nature Conservancy in Lansing; and statistician J. Roy Robertson of Battle Creek.

The research was funded by the U.S. Department of Energy Great Lakes Bioenergy Research Center with support from The Nature Conservancy’s Great Lakes Fund for Partnership in Conservation Science and Economics. Results were recently published in the scientific journal GCB (Global Change Biology) Bioenergy.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Mark Fellows | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>