Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity leads to higher productivity

22.03.2011
Ecosystems containing several species are more productive than individual species on their own. Using data from more than 400 published experiments, an international research team has found overwhelming evidence that biodiversity in the plant kingdom is very efficient in assimilating nutrients and solar energy, resulting in greater production of biomass.

“Plant communities are like a soccer team. To win championships, you need a star striker who can score goals, but you also need a cast of supporting players who can pass, defend and keep goal. Together, the star players and supporting cast make a highly efficient team,” says Lars Gamfeldt of the Department of Marine Ecology at the University of Gothenburg.

Gamfeldt is part of an international research team led by Brad Cardinale (University of Michigan, USA) which, in a special issue of the scientific journal American Journal of Botany on biodiversity, presents a study on the significance of biodiversity of plants and algae, which form the base of the food chain.

The research team based its study on the question whether ecosystems can maintain important functions such as production of biomass and conversion of nutrients when biodiversity is depleted and we lose species. In their quest for answers they have examined hundreds of published studies on everything from single-celled algae to trees. Using data from more than 400 published experiments, the researchers found overwhelming evidence that the net effect of having fewer species in an ecosystem is a reduced quantity of plant biomass.

There are two principal explanations for why species-rich plant communities may be more effective and productive. One is that they have a higher probability of including “super-species”, that is to say species that are highly productive and effective in regulating ecological processes. The other is that different species often have characteristics that complement one another. It is the fact that there is a "division of labour” among different plant species in nature that makes it possible for species-rich communities to be more productive.

The researchers also note that as a result of climate change and other human impact we are now losing species at a rapid rate. This means that we need to prioritise what we want to protect and preserve, in order to maintain the goods and services humans depend on.

”Nearly every organism on this planet depends on plants for their survival. If species extinction compromises the processes by which plants grow, then it degrades one of the key features required to sustain life on Earth," the principal author of the article Brad Cardinale comments.

Gamfeldt is attached both to the Department of Marine Ecology at the University of Gothenburg and to the Department of Ecology at the Swedish University of Agricultural Sciences.

Journal: American Journal of Botany on biodiversity
Title: The functional role of producer diversity in ecosystems
Authors: Bradley J. Cardinale, Kristin L. Matulich, David U. Hooper, Jarrett E. Byrnes, Emmett Duffy, Lars Gamfeldt, Patricia Balvanera, Mary I. O’Connor, and Andrew Gonzalez
The article The functional role of producer diversity in ecosystems can be downloaded free of charge until 2 April from http://www.amjbot.org/cgi/reprint/ajb.1000364v1

After this date journalists can contact Richard Hund, ajb@botany.org for a copy.

Contact:
Lars Gamfeldt, Department of Marine Ecology, University of Gothenburg
+46 (0)31 786 2920
+46 (0)70 339 3921
lars.gamfeldt@marecol.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.amjbot.org/cgi/reprint/ajb.1000364v1

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>