Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity leads to higher productivity

22.03.2011
Ecosystems containing several species are more productive than individual species on their own. Using data from more than 400 published experiments, an international research team has found overwhelming evidence that biodiversity in the plant kingdom is very efficient in assimilating nutrients and solar energy, resulting in greater production of biomass.

“Plant communities are like a soccer team. To win championships, you need a star striker who can score goals, but you also need a cast of supporting players who can pass, defend and keep goal. Together, the star players and supporting cast make a highly efficient team,” says Lars Gamfeldt of the Department of Marine Ecology at the University of Gothenburg.

Gamfeldt is part of an international research team led by Brad Cardinale (University of Michigan, USA) which, in a special issue of the scientific journal American Journal of Botany on biodiversity, presents a study on the significance of biodiversity of plants and algae, which form the base of the food chain.

The research team based its study on the question whether ecosystems can maintain important functions such as production of biomass and conversion of nutrients when biodiversity is depleted and we lose species. In their quest for answers they have examined hundreds of published studies on everything from single-celled algae to trees. Using data from more than 400 published experiments, the researchers found overwhelming evidence that the net effect of having fewer species in an ecosystem is a reduced quantity of plant biomass.

There are two principal explanations for why species-rich plant communities may be more effective and productive. One is that they have a higher probability of including “super-species”, that is to say species that are highly productive and effective in regulating ecological processes. The other is that different species often have characteristics that complement one another. It is the fact that there is a "division of labour” among different plant species in nature that makes it possible for species-rich communities to be more productive.

The researchers also note that as a result of climate change and other human impact we are now losing species at a rapid rate. This means that we need to prioritise what we want to protect and preserve, in order to maintain the goods and services humans depend on.

”Nearly every organism on this planet depends on plants for their survival. If species extinction compromises the processes by which plants grow, then it degrades one of the key features required to sustain life on Earth," the principal author of the article Brad Cardinale comments.

Gamfeldt is attached both to the Department of Marine Ecology at the University of Gothenburg and to the Department of Ecology at the Swedish University of Agricultural Sciences.

Journal: American Journal of Botany on biodiversity
Title: The functional role of producer diversity in ecosystems
Authors: Bradley J. Cardinale, Kristin L. Matulich, David U. Hooper, Jarrett E. Byrnes, Emmett Duffy, Lars Gamfeldt, Patricia Balvanera, Mary I. O’Connor, and Andrew Gonzalez
The article The functional role of producer diversity in ecosystems can be downloaded free of charge until 2 April from http://www.amjbot.org/cgi/reprint/ajb.1000364v1

After this date journalists can contact Richard Hund, ajb@botany.org for a copy.

Contact:
Lars Gamfeldt, Department of Marine Ecology, University of Gothenburg
+46 (0)31 786 2920
+46 (0)70 339 3921
lars.gamfeldt@marecol.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.amjbot.org/cgi/reprint/ajb.1000364v1

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>