Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity leads to higher productivity

22.03.2011
Ecosystems containing several species are more productive than individual species on their own. Using data from more than 400 published experiments, an international research team has found overwhelming evidence that biodiversity in the plant kingdom is very efficient in assimilating nutrients and solar energy, resulting in greater production of biomass.

“Plant communities are like a soccer team. To win championships, you need a star striker who can score goals, but you also need a cast of supporting players who can pass, defend and keep goal. Together, the star players and supporting cast make a highly efficient team,” says Lars Gamfeldt of the Department of Marine Ecology at the University of Gothenburg.

Gamfeldt is part of an international research team led by Brad Cardinale (University of Michigan, USA) which, in a special issue of the scientific journal American Journal of Botany on biodiversity, presents a study on the significance of biodiversity of plants and algae, which form the base of the food chain.

The research team based its study on the question whether ecosystems can maintain important functions such as production of biomass and conversion of nutrients when biodiversity is depleted and we lose species. In their quest for answers they have examined hundreds of published studies on everything from single-celled algae to trees. Using data from more than 400 published experiments, the researchers found overwhelming evidence that the net effect of having fewer species in an ecosystem is a reduced quantity of plant biomass.

There are two principal explanations for why species-rich plant communities may be more effective and productive. One is that they have a higher probability of including “super-species”, that is to say species that are highly productive and effective in regulating ecological processes. The other is that different species often have characteristics that complement one another. It is the fact that there is a "division of labour” among different plant species in nature that makes it possible for species-rich communities to be more productive.

The researchers also note that as a result of climate change and other human impact we are now losing species at a rapid rate. This means that we need to prioritise what we want to protect and preserve, in order to maintain the goods and services humans depend on.

”Nearly every organism on this planet depends on plants for their survival. If species extinction compromises the processes by which plants grow, then it degrades one of the key features required to sustain life on Earth," the principal author of the article Brad Cardinale comments.

Gamfeldt is attached both to the Department of Marine Ecology at the University of Gothenburg and to the Department of Ecology at the Swedish University of Agricultural Sciences.

Journal: American Journal of Botany on biodiversity
Title: The functional role of producer diversity in ecosystems
Authors: Bradley J. Cardinale, Kristin L. Matulich, David U. Hooper, Jarrett E. Byrnes, Emmett Duffy, Lars Gamfeldt, Patricia Balvanera, Mary I. O’Connor, and Andrew Gonzalez
The article The functional role of producer diversity in ecosystems can be downloaded free of charge until 2 April from http://www.amjbot.org/cgi/reprint/ajb.1000364v1

After this date journalists can contact Richard Hund, ajb@botany.org for a copy.

Contact:
Lars Gamfeldt, Department of Marine Ecology, University of Gothenburg
+46 (0)31 786 2920
+46 (0)70 339 3921
lars.gamfeldt@marecol.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.amjbot.org/cgi/reprint/ajb.1000364v1

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>