Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodegradable electronics

13.10.2017

Under the direction of the Fraunhofer FEP, an in-house Fraunhofer project for development of biodegradable electronics was begun last year. The Fraunhofer Institutes ENAS, IBMT, ISC, and the Fraunhofer Project Group IWKS are working together on the project. First results of the Fraunhofer FEP will be presented during Semicon Europe 2017 as part of productronica 2017 in Munich at the Silicon-Saxony joint booth in Hall B, Booth No. B1-416, November 14-17, 2017.

Electronic devices that are completely broken down in a biological environment after a pre-defined operating life open up novel applications as well as ways for reducing their ecological footprint.


Biodegradable conductor structures on biodegradable polymer film

© Fraunhofer FEP

One enabling technology for such devices is the production of biodegradable conductive traces on biodegradable substrates using vacuum technologies. This technology was developed by Fraunhofer FEP.

A novel application area for these innovative electronic components for example is in the field of active medical implants that after expiration of their operating life are resorbed by tissue, thereby sparing the patient a second surgical intervention.

The Fraunhofer Gesellschaft e. V. is now funding the “bioElektron – Biodegradable Electronics for Active Implants" project through its in-house program (funding No. MAVO B31 301). The goal of the project is the development of essential components for biodegradable electronic parts that can be employed for example in an implant.

This includes in particular

- biodegradable conductor structures
- biodegradable electrodes for collecting electrical signals or delivering electrical stimulation
- biodegradable thin-film transistors and circuitry
- biodegradable barrier coatings as moisture and gas barriers, and electrical insulation layers


These elements will be monolithically integrated into a flexible thin-film device.

Conductor structures and organic thin-film transistors are being developed at Fraunhofer FEP using vacuum technology. Deposition of magnesium via thermal evaporation under high vacuum conditions is being used as an enabling technology for this purpose.

Magnesium is known for being a biodegradable and biologically compatible metal that is already employed in clinical environments as an absorbable implant material. The challenge consists of depositing this metal onto biodegradable polymer films that magnesium does not adhere sufficiently to under normal processing conditions. By suitably pre-treating the substrates using a combination of drying, plasma treatment, and utilization of seed layers, finely structured high-quality conductor structures have been produced.

“We are now prepared to discuss these results with interested partners from industry and the scientific community during productronica 2017 at the Silicon-Saxony joint booth (Hall B1, Booth B1-416) in order to be able to implement them in current practical applications”, explains Dr. Michael Hoffmann from Fraunhofer FEP and head of the bioElektron project.

Fraunhofer FEP at productronica 2017 (SEMICON und FlexEurope):

Trade-fair booth: Silicon-Saxony joint booth in Hall B1, Booth No. B1-416

Talks:
Wednesday, 15.11.2017, 2:35 pm, ICM 1st floor, Room 14c
„Biodegradable flexible conductor structures“, Dr. Michael Hoffmann, Fraunhofer FEP

Innovation Forum
Hall B2, next to booth no. 457 OE-A Organic and Printed Electronics Association

Wednesday, 15.11.2017, 3:00 pm, Hall B2 / 453
Session: Printed Electronics Insights: Advancing Wearables
Electronics and OLED lighting in textiles, Jan Hesse, Fraunhofer FEP

Thursday, 16.11.2017, 3:00 pm, Halle B2 / 453
Session: Printed Electronics Insights: Applications and New Developments
Ultra-thin glass as a substrate and encapsulant for bendable OLED devices fabricated in Roll-to-Roll, Dr. Stefan Mogck, Fraunhofer FEP

Press contact:

Mrs. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

About bioELEKTRON:
https://www.fep.fraunhofer.de/en/ueber-uns/projekte/bioElektron.html

Link for the press release on the Fraunhofer FEP Website:
http://s.fhg.de/k5i

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Life Sciences:

nachricht Plant escape from waterlogging
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>