Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochemists find new treatment options for staph infections, inflammatory diseases

03.09.2014

Two Kansas State University biochemists have discovered a family of proteins that could lead to better treatments for Staphylococcus aureus, a pathogenic bacterium that can cause more than 60,000 potentially life-threatening infections each year.

Brian Geisbrecht, professor of biochemistry and molecular biophysics, and Kasra Ramyar, his research associate, are studying S. aureus, which is the cause of increasing common staph infections. Their work appears in the scientific journal Proceedings of the National Academy of Sciences of the United States of America, or PNAS, in the article "Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors."


This drawing represents the crystal structure of the NSP neutrophil elastase, shown in blue, bound to the Staphylococcus aureus Eap protein, EapH1, shown in gold. Two Kansas State University biochemists have discovered that S. aureus secretes a family of proteins that prevent neutrophil serine proteases, or NSPs, from functioning — an important finding for understanding how infections are established.

While S. aureus is typically a harmless commensal organism found in the nose and skin of 30 percent of the human population, it can cause serious and deadly infections if it invades deeper tissues.

In their latest research, Geisbrecht, Ramyar and collaborators discovered that S. aureus secretes a family of proteins that prevent neutrophil serine proteases, or NSPs, from functioning — an important finding for understanding how infections are established. Neutrophils — the most abundant type of white blood cells — help prevent serious infections from occurring.

"Neutrophils are like the fire department of the immune system," Geisbrecht said. "They are the first on the scene when a microbial infection tries to take hold."

Neutrophils directly attack pathogens and emit biochemical signals that recruit other inflammatory immune cells to the site of infection when they release NSPs from intracellular granules.

"To our knowledge, Staph is the first example of any bacterium that secretes protease inhibitors specifically to block an aspect of the host immune response that is essential for its removal from the body," Geisbrecht said.

The research also may lead to better treatments for inflammatory conditions, such as emphysema and chronic obstructive pulmonary disease, which are the result of dysregulated neutrophil activation in the lung.

Geisbrecht and Ramyar have closely researched neutrophils because they are the first cells to respond to infections. The biochemists' discovery that that S. aureus secretes a family of proteins — called extracellular adherence proteins, or Eaps — that block NSPs could eventually affect how staph infections are treated in the clinic.

"Understanding this interaction can not only help us design better therapies in the future, but may help make current treatment regimens work better," Geisbrecht said.

Because these Eap proteins prevent neutrophils from working properly, they are essential for S. aureus to establish an infection.

"Our bodies respond vigorously to being invaded by S. aureus, and in order to prevent the infection from spreading, we have an arsenal of soluble molecules and white blood cells," Ramyar said. "That is our immune system, and neutrophils are a vital part of that."

The latest discovery puts a new twist on the past decades of research, which include studies that were done without a detailed molecular insight into how Eap proteins function. Geisbrecht, Ramyar and collaborators are now trying to better understand how their recent findings may affect interpretation of previous research.

"Bacterial pathogens like staph wouldn't be making these proteins if they weren't important to the context of infection," Geisbrecht said. "The bacteria are trying to shut off the inflammatory response and we should be paying attention to how they're doing it."

For this project, Kansas State University researchers collaborated with scientists from University Medical Center Utrecht in the Netherlands; Saarland University Medical Center in Germany; University of Veterinary Medicine in Hannover, Germany; and the University of Missouri, Kansas City.

The Kansas State University researchers provided experimental tools, biochemical information and the atomic resolution crystal structure of a complex formed between an S. aureus Eap protein and a human NSP. They received support from the National Institutes of Health.

Sources
Brian Geisbrecht
785-532-3154
geisbrechtb@k-state.edu 

Kasra Ramyar
785-532-3154
kramyar@k-state.edu

Jennifer Tidball | Eurek Alert!
Further information:
http://www.k-state.edu/media/newsreleases/sept14/pnas9214.html

Further reports about: Biochemists Medical aureus biochemical blood conditions diseases infections inflammatory neutrophils pathogens proteins serine

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>