Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochemists find new treatment options for staph infections, inflammatory diseases

03.09.2014

Two Kansas State University biochemists have discovered a family of proteins that could lead to better treatments for Staphylococcus aureus, a pathogenic bacterium that can cause more than 60,000 potentially life-threatening infections each year.

Brian Geisbrecht, professor of biochemistry and molecular biophysics, and Kasra Ramyar, his research associate, are studying S. aureus, which is the cause of increasing common staph infections. Their work appears in the scientific journal Proceedings of the National Academy of Sciences of the United States of America, or PNAS, in the article "Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors."


This drawing represents the crystal structure of the NSP neutrophil elastase, shown in blue, bound to the Staphylococcus aureus Eap protein, EapH1, shown in gold. Two Kansas State University biochemists have discovered that S. aureus secretes a family of proteins that prevent neutrophil serine proteases, or NSPs, from functioning — an important finding for understanding how infections are established.

While S. aureus is typically a harmless commensal organism found in the nose and skin of 30 percent of the human population, it can cause serious and deadly infections if it invades deeper tissues.

In their latest research, Geisbrecht, Ramyar and collaborators discovered that S. aureus secretes a family of proteins that prevent neutrophil serine proteases, or NSPs, from functioning — an important finding for understanding how infections are established. Neutrophils — the most abundant type of white blood cells — help prevent serious infections from occurring.

"Neutrophils are like the fire department of the immune system," Geisbrecht said. "They are the first on the scene when a microbial infection tries to take hold."

Neutrophils directly attack pathogens and emit biochemical signals that recruit other inflammatory immune cells to the site of infection when they release NSPs from intracellular granules.

"To our knowledge, Staph is the first example of any bacterium that secretes protease inhibitors specifically to block an aspect of the host immune response that is essential for its removal from the body," Geisbrecht said.

The research also may lead to better treatments for inflammatory conditions, such as emphysema and chronic obstructive pulmonary disease, which are the result of dysregulated neutrophil activation in the lung.

Geisbrecht and Ramyar have closely researched neutrophils because they are the first cells to respond to infections. The biochemists' discovery that that S. aureus secretes a family of proteins — called extracellular adherence proteins, or Eaps — that block NSPs could eventually affect how staph infections are treated in the clinic.

"Understanding this interaction can not only help us design better therapies in the future, but may help make current treatment regimens work better," Geisbrecht said.

Because these Eap proteins prevent neutrophils from working properly, they are essential for S. aureus to establish an infection.

"Our bodies respond vigorously to being invaded by S. aureus, and in order to prevent the infection from spreading, we have an arsenal of soluble molecules and white blood cells," Ramyar said. "That is our immune system, and neutrophils are a vital part of that."

The latest discovery puts a new twist on the past decades of research, which include studies that were done without a detailed molecular insight into how Eap proteins function. Geisbrecht, Ramyar and collaborators are now trying to better understand how their recent findings may affect interpretation of previous research.

"Bacterial pathogens like staph wouldn't be making these proteins if they weren't important to the context of infection," Geisbrecht said. "The bacteria are trying to shut off the inflammatory response and we should be paying attention to how they're doing it."

For this project, Kansas State University researchers collaborated with scientists from University Medical Center Utrecht in the Netherlands; Saarland University Medical Center in Germany; University of Veterinary Medicine in Hannover, Germany; and the University of Missouri, Kansas City.

The Kansas State University researchers provided experimental tools, biochemical information and the atomic resolution crystal structure of a complex formed between an S. aureus Eap protein and a human NSP. They received support from the National Institutes of Health.

Sources
Brian Geisbrecht
785-532-3154
geisbrechtb@k-state.edu 

Kasra Ramyar
785-532-3154
kramyar@k-state.edu

Jennifer Tidball | Eurek Alert!
Further information:
http://www.k-state.edu/media/newsreleases/sept14/pnas9214.html

Further reports about: Biochemists Medical aureus biochemical blood conditions diseases infections inflammatory neutrophils pathogens proteins serine

More articles from Life Sciences:

nachricht Unidentified spectra detector
28.06.2016 | European Molecular Biology Laboratory - European Bioinformatics Institute

nachricht Freiburg Biologists Explain Function of Pentagone
28.06.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Rotating ring of complex organic molecules discovered around newborn star

28.06.2016 | Physics and Astronomy

Unidentified spectra detector

28.06.2016 | Life Sciences

Clandestine black hole may represent new population

28.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>