Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big-brained animals evolve faster

19.08.2008
Ever since Darwin, evolutionary biologists have wondered why some lineages have diversified more than others. A classical explanation is that a higher rate of diversification reflects increased ecological opportunities that led to a rapid adaptive radiation of a clade.

A textbook example is Darwin finches from Galapagos, whose ancestor colonized a competitors-free archipelago and rapidly radiated in 13 species, each one adapted to use the food resources in a different way.

This and other examples have led some to think that the progenitors of the major evolutionary radiations are those that happened to be in the right place and at the right time to take advantage of ecological opportunities. However, is it possible that biological diversification not only depends on the properties of the environment an ancestral species finds itself in, but also on the features of the species itself?

Now a study supports this possibility, suggesting that possessing a large brain might have facilitated the evolutionary diversification of some avian lineages.

Over 20 years ago, Jeff Wyles, Allan Wilson, and Joseph Kunkel proposed that big brains might favor adaptive evolutionary diversification in animals by facilitating the behavioral changes needed to use new resources or environments, a theory known as the behavioral drive hypothesis. When these authors formulated their hypothesis, evidence that the size of the brain limits the cognitive capacity of animals were scanty.

Since then, however, a substantial body of evidence has confirmed that animals with larger brains, relative to their body size, have more developed skills for changing their behavior through learning and innovation, facilitating the invasion of novel environments and the use of novel resources. Despite the progress, the role of the brain in the adaptive diversification of animals has remained controversial, mostly due to the difficulties to demonstrate that big-brained animals evolve faster. Now, ecologist Daniel Sol of CREAF-Autonomous University of Barcelona and evolutionary biologist Trevor Price of the University of Chicago, provide evidence for such a role in birds in an article in the August issue of The American Naturalist.

Analyzing body size measures of 7,209 species (representing 75% of all avian species), they found that avian families that have experienced the greatest diversification in body size tend to be those with brains larger than expected for their body size. These include the Picidae (woodpeckers), Bucerotidae (hornbills), Psittacidae (parrots), Strigidae (owls), Menuridae (lyrebirds) and Corvidae (crows). Brain size can promote morphological diversification because it facilitates range expansions and speciation, yet the analyses indicate that the brain-diversification association is statistically independent of geographic range and species richness.

"The most likely alternative," Daniel Sol states, "is that big brains enhance the rate of evolutionary diversification by facilitating changes in behavior, which would place new selection pressures on populations and favor adaptive divergence." Thus, in species with high cognitive styles, behavior might be, along with environmental factors, a major driving force for evolution.

Patricia Morse | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>