Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big-brained animals evolve faster

19.08.2008
Ever since Darwin, evolutionary biologists have wondered why some lineages have diversified more than others. A classical explanation is that a higher rate of diversification reflects increased ecological opportunities that led to a rapid adaptive radiation of a clade.

A textbook example is Darwin finches from Galapagos, whose ancestor colonized a competitors-free archipelago and rapidly radiated in 13 species, each one adapted to use the food resources in a different way.

This and other examples have led some to think that the progenitors of the major evolutionary radiations are those that happened to be in the right place and at the right time to take advantage of ecological opportunities. However, is it possible that biological diversification not only depends on the properties of the environment an ancestral species finds itself in, but also on the features of the species itself?

Now a study supports this possibility, suggesting that possessing a large brain might have facilitated the evolutionary diversification of some avian lineages.

Over 20 years ago, Jeff Wyles, Allan Wilson, and Joseph Kunkel proposed that big brains might favor adaptive evolutionary diversification in animals by facilitating the behavioral changes needed to use new resources or environments, a theory known as the behavioral drive hypothesis. When these authors formulated their hypothesis, evidence that the size of the brain limits the cognitive capacity of animals were scanty.

Since then, however, a substantial body of evidence has confirmed that animals with larger brains, relative to their body size, have more developed skills for changing their behavior through learning and innovation, facilitating the invasion of novel environments and the use of novel resources. Despite the progress, the role of the brain in the adaptive diversification of animals has remained controversial, mostly due to the difficulties to demonstrate that big-brained animals evolve faster. Now, ecologist Daniel Sol of CREAF-Autonomous University of Barcelona and evolutionary biologist Trevor Price of the University of Chicago, provide evidence for such a role in birds in an article in the August issue of The American Naturalist.

Analyzing body size measures of 7,209 species (representing 75% of all avian species), they found that avian families that have experienced the greatest diversification in body size tend to be those with brains larger than expected for their body size. These include the Picidae (woodpeckers), Bucerotidae (hornbills), Psittacidae (parrots), Strigidae (owls), Menuridae (lyrebirds) and Corvidae (crows). Brain size can promote morphological diversification because it facilitates range expansions and speciation, yet the analyses indicate that the brain-diversification association is statistically independent of geographic range and species richness.

"The most likely alternative," Daniel Sol states, "is that big brains enhance the rate of evolutionary diversification by facilitating changes in behavior, which would place new selection pressures on populations and favor adaptive divergence." Thus, in species with high cognitive styles, behavior might be, along with environmental factors, a major driving force for evolution.

Patricia Morse | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>