Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big-brained animals evolve faster

19.08.2008
Ever since Darwin, evolutionary biologists have wondered why some lineages have diversified more than others. A classical explanation is that a higher rate of diversification reflects increased ecological opportunities that led to a rapid adaptive radiation of a clade.

A textbook example is Darwin finches from Galapagos, whose ancestor colonized a competitors-free archipelago and rapidly radiated in 13 species, each one adapted to use the food resources in a different way.

This and other examples have led some to think that the progenitors of the major evolutionary radiations are those that happened to be in the right place and at the right time to take advantage of ecological opportunities. However, is it possible that biological diversification not only depends on the properties of the environment an ancestral species finds itself in, but also on the features of the species itself?

Now a study supports this possibility, suggesting that possessing a large brain might have facilitated the evolutionary diversification of some avian lineages.

Over 20 years ago, Jeff Wyles, Allan Wilson, and Joseph Kunkel proposed that big brains might favor adaptive evolutionary diversification in animals by facilitating the behavioral changes needed to use new resources or environments, a theory known as the behavioral drive hypothesis. When these authors formulated their hypothesis, evidence that the size of the brain limits the cognitive capacity of animals were scanty.

Since then, however, a substantial body of evidence has confirmed that animals with larger brains, relative to their body size, have more developed skills for changing their behavior through learning and innovation, facilitating the invasion of novel environments and the use of novel resources. Despite the progress, the role of the brain in the adaptive diversification of animals has remained controversial, mostly due to the difficulties to demonstrate that big-brained animals evolve faster. Now, ecologist Daniel Sol of CREAF-Autonomous University of Barcelona and evolutionary biologist Trevor Price of the University of Chicago, provide evidence for such a role in birds in an article in the August issue of The American Naturalist.

Analyzing body size measures of 7,209 species (representing 75% of all avian species), they found that avian families that have experienced the greatest diversification in body size tend to be those with brains larger than expected for their body size. These include the Picidae (woodpeckers), Bucerotidae (hornbills), Psittacidae (parrots), Strigidae (owls), Menuridae (lyrebirds) and Corvidae (crows). Brain size can promote morphological diversification because it facilitates range expansions and speciation, yet the analyses indicate that the brain-diversification association is statistically independent of geographic range and species richness.

"The most likely alternative," Daniel Sol states, "is that big brains enhance the rate of evolutionary diversification by facilitating changes in behavior, which would place new selection pressures on populations and favor adaptive divergence." Thus, in species with high cognitive styles, behavior might be, along with environmental factors, a major driving force for evolution.

Patricia Morse | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>