Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Behind a Marine Creature’s Bright Green Fluorescent Glow

02.07.2014

Fish-like animal emanates bright and dim versions of fluorescent light, a phenomenon that could help guide human biotechnological applications

Pushing closer to understanding the mechanisms behind the mysterious glow of light produced naturally by certain animals, scientists at Scripps Institution of Oceanography at UC San Diego have deciphered the structural components related to fluorescence brightness in a primitive sea creature.


Green fluorescent glow emitted by a lancelet, a marine animal also known as 'amphioxus.'

In a study published in Scientific Reports, an open-access journal of the Nature Publishing Group, Dimitri Deheyn and his colleagues at Scripps Oceanography, the Air Force Research Laboratory, and the Salk Institute for Biological Studies have conducted the most detailed examination of green fluorescent proteins (GFPs) in lancelets, marine invertebrates also known as “amphioxus.”

The fish-shaped animals, which spend much of their time in shallow coastal regions burrowed in sand except for their heads, offer unique insights on natural fluorescence since individual specimens can emit both very bright and much dimmer versions of the light, a rare capability in the animal kingdom.

The study carries implications for a variety of industries looking to maximize brightness of natural fluorescence—the process of transformation of blue “excitation” light into green “emission” light—including applications in biotechnology such as adapting fluorescence for biomedical protein tracers and for tracking the expression of specific genes in the human body.

In investigating the structural differences between the proteins with the two levels of light output, known to be generated by the GFPs inside amphioxus, Deheyn and his colleagues found that only a few key structural differences at the nanoscale allows the sea creature to emit different brightness levels. The differences relate to changes in stiffness around the animal’s “chromophore pocket,” the area of proteins responsible for molecular transformation of light, and thus light output intensity.

“We discovered that some of the amphioxus GFPs are able to transform blue light into green light with 100 percent efficiency (current engineered GFPs—traditionally rooted in the Cnidarian phylum—only reach 60 to 80 percent efficiency), which combines with other properties of light absorbance to make the amphioxus GFPs about five times brighter than current commercially available GFPs, resulting in effect to a huge difference,” said Deheyn. “It is also interesting that the same animal will also express similar GFPs with an efficiency of about 1,000 times less.”

The exact mechanism that controls this ability of perfect efficiency during light transformation from blue to green remains unknown, Deheyn said, but this study opens doors towards its understanding.

“The most unique part of this discovery perhaps lays in the fact that for the first time, we show that different GFPs seem to have different functions within the same individual and unrelated to their ability to produce light, thus probably involving a biochemical role as well,” said Deheyn. “Nevertheless, having bright GFPs or the tool to increase brightness in current ones is critical for optimizing applications of fluorescence.”

Amphioxus are thought to use fluorescence for photo-protection (thus acting as sunscreen), as an antioxidant, and possibly for photo-sensing (using GFPs as receptors to the surrounding light) in their environment. Deheyn says learning more about bright-emitting GFPs in nature is useful for a variety of applications and fields of science.

“The U.S. Air Force, and the Department of Defense in general, uses a large variety of biosensors in biomedicine, bioengineering, and materials science, and providing proteins with the ability to be very bright can help technology advance because of better signal-to-noise ratio.”

Coauthors of the paper include Erin Bomati of Scripps Oceanography; Joy Haley of the Air Force Research Laboratory; and Joseph Noel of the Salk Institute for Biological Studies. The Air Force Office of Scientific Research supported the study.

Mario Aguilera | Eurek Alert!
Further information:
https://scripps.ucsd.edu/news/behind-marine-creatures-bright-green-fluorescent-glow

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>