Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From the beginning, the brain knows the difference between night and day

29.04.2011
The brain is apparently programmed from birth to develop the ability to determine sunrise and sunset, new research on circadian rhythms at the University of Chicago shows.

The research sheds new light on brain plasticity and may explain some basic human behaviors, according to Brian Prendergast, associate professor in psychology at the University of Chicago and co-author of a paper published April 27 in the journal PLoS One. The lead author is August Kampf-Lassin, an advanced graduate student at the University.

"This finding may show us why infants of many species eventually learn to discriminate daytime from nighttime," said Prendergast, a researcher on biological rhythms.

In a series of experiments, researchers were able to show that although the ability to see visual stimuli, such as movement, is lost when a developing eye is not exposed to light, the ability to determine light and dark cycles was not affected. The ability to make that distinction between night and day develops as an animal grows, they found.

Other research has found that primates as well as humans adapt naturally to a rhythm of sleeping during the night. But this research shows that the pathway in the circadian system that allows synchrony between the brain and day-night rhythms in the environment is probably an innate feature of development, he said.

"For the first time, we have established that the ability to coordinate circadian rhythms with daily changes in light exposure is not subject to very much plasticity at all — that it is not influenced by changes in the amount of light the brain receives during development," Kampf-Lassin said.

The results of the study are reported in the article "Experience-Independent Development of the Hamster Circadian Visual System," which was drawn from a series of challenging experiments with hamsters.

Shortly after the hamsters' eyes opened, but before they were exposed to light, experimenters placed a contact lens that completely blocked light over one of their eyes. Keeping one eye shut and one open, called monocular deprivation, is a standard method scientists use to study use-dependent plasticity of visual development.

The hamsters then grew up in a light-dark cycle such that only the non-deprived eye was able to send light information into the brain. In adulthood, the lenses were removed, and the function of the hamsters' previously deprived eye was assessed. The researchers found that the hamsters' brains were blind to all classical visual stimuli presented to the deprived eye, such as food or moving stimuli.

Nevertheless, the deprived eye perfectly retained the hamsters' ability to synchronize their circadian rhythms of activity with the 24-hour day. Thus, even though the hamsters could not see objects with the deprived eye, they could use input from the eye to set their internal clocks. The study also showed that long-term monocular deprivation did not affect anatomical projections from the eye to the circadian clock in the brain, and light-induced changes in gene expression in the circadian clock were also normal.

"It's interesting to see how some aspects of behavioral development are hard-wired and develop into adult-typical patterns, even in the total absence of normal environmental input to the system," Prendergast said.

Other authors on the paper were Jenny Wei and Jerome Galang, undergraduates at the University.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: circadian clock circadian rhythm internal clock

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>