Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From the beginning, the brain knows the difference between night and day

29.04.2011
The brain is apparently programmed from birth to develop the ability to determine sunrise and sunset, new research on circadian rhythms at the University of Chicago shows.

The research sheds new light on brain plasticity and may explain some basic human behaviors, according to Brian Prendergast, associate professor in psychology at the University of Chicago and co-author of a paper published April 27 in the journal PLoS One. The lead author is August Kampf-Lassin, an advanced graduate student at the University.

"This finding may show us why infants of many species eventually learn to discriminate daytime from nighttime," said Prendergast, a researcher on biological rhythms.

In a series of experiments, researchers were able to show that although the ability to see visual stimuli, such as movement, is lost when a developing eye is not exposed to light, the ability to determine light and dark cycles was not affected. The ability to make that distinction between night and day develops as an animal grows, they found.

Other research has found that primates as well as humans adapt naturally to a rhythm of sleeping during the night. But this research shows that the pathway in the circadian system that allows synchrony between the brain and day-night rhythms in the environment is probably an innate feature of development, he said.

"For the first time, we have established that the ability to coordinate circadian rhythms with daily changes in light exposure is not subject to very much plasticity at all — that it is not influenced by changes in the amount of light the brain receives during development," Kampf-Lassin said.

The results of the study are reported in the article "Experience-Independent Development of the Hamster Circadian Visual System," which was drawn from a series of challenging experiments with hamsters.

Shortly after the hamsters' eyes opened, but before they were exposed to light, experimenters placed a contact lens that completely blocked light over one of their eyes. Keeping one eye shut and one open, called monocular deprivation, is a standard method scientists use to study use-dependent plasticity of visual development.

The hamsters then grew up in a light-dark cycle such that only the non-deprived eye was able to send light information into the brain. In adulthood, the lenses were removed, and the function of the hamsters' previously deprived eye was assessed. The researchers found that the hamsters' brains were blind to all classical visual stimuli presented to the deprived eye, such as food or moving stimuli.

Nevertheless, the deprived eye perfectly retained the hamsters' ability to synchronize their circadian rhythms of activity with the 24-hour day. Thus, even though the hamsters could not see objects with the deprived eye, they could use input from the eye to set their internal clocks. The study also showed that long-term monocular deprivation did not affect anatomical projections from the eye to the circadian clock in the brain, and light-induced changes in gene expression in the circadian clock were also normal.

"It's interesting to see how some aspects of behavioral development are hard-wired and develop into adult-typical patterns, even in the total absence of normal environmental input to the system," Prendergast said.

Other authors on the paper were Jenny Wei and Jerome Galang, undergraduates at the University.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: circadian clock circadian rhythm internal clock

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>