Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baylor researchers unravel mystery of DNA conformation

15.07.2009
An iconic photograph (http://img.timeinc.net/time/80days/images/530228.jpg) of Nobel laureates Drs. Francis Crick and James Watson show the pair discussing with a rigid model of the famous double helix.

The interaction represented produced the famous explanation of the structure of DNA, but the model pictured is a stiff snapshot of idealized DNA.

As researchers from Baylor College of Medicine (www.bcm.edu) and the University of Houston (www.uh.edu) note in a report that appears online in the journal Nucleic Acids Research, DNA is not a stiff or static. It is dynamic with high energy. It exists naturally in a slightly underwound state and its status changes in waves generated by normal cell functions such as DNA replication, transcription, repair and recombination. DNA is also accompanied by a cloud of counterions (charged particles that neutralize the genetic material's very negative charge) and, of course, the protein macromolecules that affect DNA activity.

"Many models and experiments have been interpreted with the static model," said Dr. Lynn Zechiedrich (http://www.bcm.edu/molvir/faculty/elz.htm), associate professor of molecular virology and microbiology at BCM and a senior author of the report. "But this model does not allow for the fact that DNA in real life is transiently underwound and overwound in its natural state."

DNA appears a perfect spring that can be stretched and then spring back to its original conformation. How far can you stretch it before something happens to the structure and it cannot bounce back? What happens when it is exposed to normal cellular stresses involved in doing its job? That was the problem that Zechiedrich and her colleagues tackled.

Their results also addresses a question posed by another Nobel laureate, the late Dr. Linus Pauling, who asked how the information encoded by the bases could be read if it is sequestered inside the DNA molecular with phosphate molecules on the outside.

It's easy to explain when the cell divides because the double-stranded DNA also divides at the behest of a special enzyme, making its genetic code readily readable.

"Many cellular activities, however, do not involve the separation of the two strands of DNA," said Zechiedrich.

To unravel the problem, former graduate student, Dr. Graham L. Randall, mentored jointly by Zechiedrich and Dr. B. Montgomery Pettitt (http://www.chem.uh.edu/Faculty/Pettitt/Research/) of UH, simulated 19 independent DNA systems with fixed degrees of underwinding or overwinding, using a special computer analysis started by Petttitt.

They found that when DNA is underwound in the same manner that you might underwind a spring, the forces induce one of two bases – adenine or thymine – to "flip out" of the sequence, thus relieving the stress that the molecule experiences.

"It always happens in the underwound state," said Zechiedrich. "We wanted to know if torsional stress was the force that accounted for the base flipping that others have seen occur, but for which we had no idea where the energy was supplied to do this very big job."

When the base flips out, it relieves the stress on the DNA, which then relaxes the rest of the DNA not involved in the base flipping back to its "perfect spring" state.

When the molecule is overwound, it assumes a "Pauling-like DNA" state in which the DNA turns itself inside out to expose the bases -- much in the way Pauling had predicted.

Zechiedrich and her colleagues theorize that the base flipping, denaturation, and Pauling-like DNA caused by under- and overwinding allows DNA to interact with proteins during processes such as replication, transcription and recombination and allows the code to be read. And back to the idea of the "perfect spring" behavior of the DNA helix - "This notion is entirely wrong," said Zechiedrich. "Underwinding is not equal and opposite to overwinding, as predicted, not by a long shot, that's really a cool result that Graham got."

Support for this work came from the Robert A. Welch Foundation, the National Institutes of Health and the Keck Center for Interdisciplinary Bioscience Training of the Gulf Coast Consortia. The computations were performed in part using the Teragrid and the Molecular Science Computing 85 Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu/news
http://www.bcm.edu/fromthelab

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>